
Porting open source (UNIX) software to OpenVMS
A product of the OpenOffice.org on OpenVMS porting group

http://www.oooovms.dyndns.org/

Written by Martin Borgman and Ton van der Zwet

(guide 19-jul-2005)

This guide is a work in progress
The latest version can be found at http://www.oooovms.dyndns.org/reference

http://www.oooovms.dyndns.org/
http://www.oooovms.dyndns.org/reference
mailto:Ton.vanderZwet@oooovms.dyndns.org?subject=OpenVMS Porting Guide version v0.4
mailto:Martin.Borgman@oooovms.dyndns.org?subject=OpenVMS Porting Guide v0.4

Table of Contents
Preface...3
Part I Open source, Unix and OpenVMS...5

Open source versus propriety software...5
Unix, Linux, Open Unix standard...5
OpenVMS, open standards...5
Open source on OpenVMS...6
OpenVMS-UNIX differences..6

Part II: build the open source porting environment on OpenVMS...8
Build the OpenVMS porting system...8
Installing GNV..10
Process quotas..13
Setting up porting accounts...15

PART III: Hints and tips on using the porting environment and the GNV tools...................17
Working with GNV...17
Tips..17

Part IV: Building open source software..18
The GNU build system...19
Recommendation for OpenVMS..19
The OpenVMS C runtime library...21
Recommendation...25
Macros...26
Recommendation...28
GCC wrapper...29
Fork()...30
RMS...33
Known Porting Issues..34

Part V: Appendices..35
Appendix 1: Example port of m4...35
Appendix 2: Porting Issues..41
Appendix 3: adduser.com..56
Appendix 4: OpenVMS – UNIX comparison..59

Preface
OpenVMS and Open source both started using the Open prefix some time ago. Before that, all we
had were a lot of operating systems, one of which was VAX VMS. Each operating system came with
its own possibilities, strong and weak points. If you wanted a application to run on your computer you
would buy or build the application yourself for your computer. The efforts needed to get the thing
going, were often so great that people sought methods to make the process of implementing
applications on a different platform (so called porting) easier. Especially software meant to be
implemented on many different platforms and software developed for platforms not yet known had to
take measures to make implementations as easy as possible. Conformation to open or industry
standards helped a lot. If software was delivered including the sources so the client could modify the
software to suit his (changing) needs with the obligation to make his changes available to other users
of this software the term open source software comes to mind. Although open source software and
open standards are strictly speaking not necessarily related, they are often mentioned in one breath,
because people benefit the most if both are optimally available: easy (and thus cheap) deployment of
applications.

The open in OpenVMS just means that people can rely on the conformation to open standards in the
OpenVMS operating system. OpenVMS is available not only on VAX hardware but also on Alpha
and since 2004 also on industry standard IA64 hardware.

Purpose

This guide will explain how to port opensource software to OpenVMS using the features introduced
in the DII COE releases of OpenVMS (7.2-6C1 & 7.2-6C2).

The guide does not specifically target these versions of OpenVMS but the first public versions of
OpenVMS with some of these new UNIX features. To be more specific, OpenVMS versions 7.3 7.3-
1, 7.3-2 and up. The latest OpenVMS version (OpenVMS 8.2) has the most of these new features.

Because the development of the porting tooling is progressing fast and more portability features will
be added to OpenVMS in the future, we will regularly update this guide. The latest version of this
guide can be found at http://www.oooovms.dyndns.org/reference.

Many open source projects use UNIX shell scripts to build and install. We will be looking on how to
do the same thing on OpenVMS using the UNIX commands and utilities provided by the GNV kit.

We will not look at porting open source software to older versions of OpenVMS, although some of
these older versions are still supported. Porting to these older versions of OpenVMS can be done,
but it is considerably more difficult.

Intended audience

Basically everybody with interest in open source software. If everything was perfect this would be the
only requirement, but alas, things are not perfect. In the current versions of open source software
OpenVMS is seldom recognized or considered as a target platform. We think (and hope) this will
change soon. In the meanwhile porters will benefit from some programming experience. C and/or
C++ experience on OpenVMS or UNIX systems is a big pre. Other languages often used in open
source world are bash, make and perl.

System management experience is more a requirement because porting may require making
adaptations to the porting environment on OpenVMS.

Acknowledgments

We would like to thank all the people who contributed in any form to this guide. There are many
people who contributed material, thoughts or inside information. Without their contributions this guide
wouldn't be as useful l as it is now. Steve Pitcher, Frank Ries and Brad McCusker are (or were)not

Page 3

http://www.oooovms.dyndns.org/reference

only working on GNV and the CRTL, but were also listening to our needs and sharing their
knowledge with us.

Valuable support for our efforts continuously came from Sue Skonetski and our own VMS
ambassador Gerrit Woertman. Without their support many doors wouldn't have opened at our
knocking.

Page 4

Part I Open source, Unix and OpenVMS

Open source versus propriety software
This guide will not start with a in depth philosophic discussion about the difference between Open
source, Free ware, shareware and propriety software. Instead we prefer to follow the definitions
given in the following publication:

Title: The BUSINESS and ECONOMICS of LINUX and OPEN SOURCE

Written by: Martin Fink

Printed by: Prentice Hall

ISBN: 0-13-047677-3

These definitions and the legal implications the various license agreements have, are for our purpose
not relevant. We will concentrate on the technical aspects of the process of the port of open source
software to OpenVMS.

Unix, Linux, Open Unix standard
As the majority of the open source software originates from a form of UNIX, we will have to know the
characteristics of this type of platform and the differences between these platform and the target
platform: OpenVMS. This is simpler said as done, as there are as many different implementations of
UNIX as there are suppliers of hardware and operating system software. Starting in the early days of
UNIX, when the universities not only had access to UNIX, but also had access to the source of the
operating system, different solutions to common problems emerged. This resulted in a family of
related operating systems commonly known as UNIX. Ownership of the UNIX brand name passed
hands and the situation became rather confusing. Who had the one and only UNIX? So, people
started to define standards (alas not one standard...) by which a “real” UNIX could be recognized. In
the reference section of our website (http://www.oooovms.dyndns.org/reference) we compare the
following UNIX standards with the OpenVMS features: XSI, POSIX Base, Unix 98, Unix 95, P96 P92,
C99, C89, SVID3, BSD, LSB 1.3

LINUX is a very popular UNIX like operating system, available in many different distributions, each
with slightly different characteristics.

Making software for such a divers environment was a nightmare. But very inventive software
developers found a solution. The solution was two fold:

– Define and enforce a minimum set of features through standardization, much like the RFC's for
TCP/IP. On our website we have an set of tables listing a few of the most important UNIX
standards and their content in terms of tools and required system services.
(http://www.oooovms.dyndns.org/reference) item UNIX® System Interface Tables.

– Automate the build process by using a set of tools capable of finding and reacting (adapting) to
differences between platforms. This led to the development of autoconf, automake and libtool.
These tools are also known as the GNU autotools environment
(http://sources.redhat.com/autobook/)

OpenVMS, open standards
OpenVMS on the other hand is a propriety operating system owned and maintained by HP. There
are a few initiatives to make OpenVMS clones (for instance freeVMS
(http://freevms.free.fr/indexGB.html)), but in this guide we will concentrate on the OpenVMS
operating system from HP. As stated in the SPD (software product description) OpenVMS conforms
itself to a set of Open Standards. open standards means in this respect that a standardization
organization is responsible for the exact text of a standard. Full conformation to this standard means

Page 5

http://b/
http://b/
http://www.oooovms.dyndns.org/reference
http://www.oooovms.dyndns.org/reference

in our opinion that a product will be adapted to the standard if a difference is found, not the other way
around (adapting the standard to the behavior of a product, as is mostly the case with so-called
industry-standards).

The open standards that are most interesting for open source to OpenVMS porters are (from the
OpenVMS 8.2 SPD (http://h18000.www1.hp.com/info/XAV12X/XAV12XPF.PDF)):

– Distributed Computing Environment (DCE) Support
– Support for OSF/Motif and X Window System Standards (X11R6 server and X11R5 client)
– ANSI X3.4-1986: American Standard Code for Information Interchange
– ANSI X3.41-1974: Code Extension Techniques for Use with 7-bit ASCII
– FIPS 1-2: Code for Information Interchange, Its Representations, Subsets, and Extensions
– ISO 646: ISO 7-bit Coded Character Set for Information Exchange
– ISO 2022: Code Extension Techniques for Use with ISO 646
– ISO 3307: Representations of Time of the Day
– ISO 4873: 8-Bit Code for Information Interchange — Structure and Rules for Implementation
– ISO 9660: Information Processing—Volume and file structure of CD–ROM for information exchange

Open source on OpenVMS
The question here is not, can we have open source software on OpenVMS, because you're already
using some open source software. CDSA is an open source security framework that is now used on
OpenVMS. You cannot install current releases of OpenVMS without it. There are two CDSA add-ons,
SSL and Kerberos. Both are open source. In the TCP/IP package you'll find BIND and DHCP from
the Internet Software Consortium. And what about the SMTP, POP, IMAP, SSH.... These are just
some packages that are part of the standard OpenVMS distribution. But there's more, there's
Apache, Mozilla, Samba, MySQL, Tomcat, Perl, Python. We could continue for over an hour naming
open source tools that are ported to OpenVMS.

Then there's the business rationale of open source. Why should you, or your company use open
source software. This is not as simple as many people think. The fact that open source is free does
not necessarily mean that it is cheaper to run for you or your company. Because of the complexity of
the subject we would like to point you to a good book on the subject:

Title: The BUSINESS and ECONOMICS of LINUX and OPEN SOURCE

Written by: Martin Fink

Printed by: Prentice Hall

ISBN: 0-13-047677-3

OpenVMS-UNIX differences
The best way to compare UNIX and OpenVMS is probably by way of a table with a side by side
comparison of the interesting aspects. In appendix 4 you'll find such a table.

This is but a partial list. It is probably best to point you to some good books on the subject:

From John Wisniewski, who was the driving force behind the OpenVMS Hobbyist program, is the
excellent book:

Title: Linux and OpenVMS Interoperability

Written by: John Wisniewski

Printed by: Digital Press

ISBN: 1-55558-267-2

The following book is written to make life easier for OpenVMS literate people new to the UNIX
environment:

Title: UNIX for VMS Users

Page 6

http://h18000.www1.hp.com/info/XAV12X/XAV12XPF.PDF

Written by: Philip E. Bourne

Printed by: Digital Press

ISBN: 1-55558-034-3

Page 7

Part II: build the open source porting environment on
OpenVMS.

Build the OpenVMS porting system
The first step in the porting process is getting a suitable OpenVMS system up and running. Although
OpenVMS is available on three hardware platforms, only two of them are sufficiently equipped to do
serious opensource porting: Alpha and IA64. The VAX platform lacks support for some important
features in a stand-alone configuration. VAX OpenVMS for instance lacks support for native ODS5
and GNV.

Because we have only access to Alpha systems and because IA64 OpenVMS is, as far as we know,
functionally equal to Alpha OpenVMS, all examples are based on Alpha OpenVMS.

In the reference section of the www.oooovms.dyndns.org website are examples of steps involved in
building a OpenVMS system. There are documents about upgrading firmware
(http://www.oooovms.dyndns.org/reference/sw_install/firmware.html), initial installation of OpenVMS
(http://www.oooovms.dyndns.org/reference/sw_install/install_os.html), first boot
(http://www.oooovms.dyndns.org/reference/sw_install/firstboot.html) and initial configuration of
OpenVMS (http://www.oooovms.dyndns.org/reference/sw_install/initial_configuration.html).

To make an optimal environment we need to give some attention to system parameters, some
system file sizing and process quota and settings. Lets proceed with the system parameters.

System parameters

OpenVMS system parameters are very much like UNIX kernel parameters.

System parameters take effect at system boot time, although there are system parameters that can
be changed and have immediate effect on a running system. So, unless you want to reboot often,
you should take some time to set the system parameters to their correct values for your system.

New values for system parameters should be edited in the sys$system:modparams.dat. This file
is node specific and should contain all changes you want to take effect to next time the system boots.
This file is read by the autogen procedure. We recommend you comment on all changes in this file.

CHANNELCNT should be set to a value at least as big as the UAF FILLM value. A good practice is
to set the value to the biggest value of: the current value, the largest UAF FILLM value and 4096.
Note that the SDK process will have the lower value of the UAF quota FILLM or the SYSGEN
parameter CHANNELCNT.

Page 8

http://www.oooovms.dyndns.org/reference/sw_install/initial_configuration.html
http://www.oooovms.dyndns.org/reference/sw_install/firstboot.html
http://www.oooovms.dyndns.org/reference/sw_install/install_os.html
http://www.oooovms.dyndns.org/reference/sw_install/firmware.html
http://www.oooovms.dyndns.org/

Part of a modparams.dat:

.

.
! Created during installation of OpenVMS AXP V7.3-1 26-JAN-2003 16:05:09.28
MIN_GBLSECTIONS=1000
!
ALLOCLASS=1 ! necessary for shadowing
SHADOWING=2 ! enable shadowing
SHADOW_SYS_DISK=1 ! enable shadowed system disk
SHADOW_SYS_UNIT=0 ! unit number system disk
SHADOW_MAX_COPY=4 ! max concurrent shadow copies
!
CHANNELCNT=8192 ! large compiles etc..
!
MAXPROCESSCNT=128 ! we don't need so many processes...
!
MIN_CTLPAGES=1536 ! performance tcpip processes?
!
SWAPFILE=0 ! do not adjust the swapfile sizes
!^^
.
.

After you made the necessary changes to sys$system:modparams.dat invoke the autogen
procedure:

$ @sys$update:autogen savparams setparams feedback

You can check the results of this procedure as follows:

$ set terminal/width=132
$ differences/parallel sys$system:setparams.dat

File SYS$SYSROOT:[SYSEXE]SETPARAMS.DAT;7 | File SYS$SYSROOT:[SYSEXE]SETPARAMS.DAT;6
-------------------------------- 11 -- 11 ---------------------
set SYSMWCNT 2102 | set SYSMWCNT 2092
set WSMAX 262144 | set WSMAX 262144
set NPAGEDYN 4349952 | set NPAGEDYN 3022848
set NPAGEVIR 19169280 | set NPAGEVIR 12877824
set PAGEDYN 1794048 | set PAGEDYN 1785856
-------------------------------- 58 -- 58 ---------------------
set GBLPAGES 1118016 | set GBLPAGES 1105978

Number of difference sections found: 2
Number of difference records found: 6

DIFFERENCES /IGNORE=()/PARALLEL-
 SYS$SYSROOT:[SYSEXE]SETPARAMS.DAT;7-
 SYS$SYSROOT:[SYSEXE]SETPARAMS.DAT;6

If you are satisfied with the generated or changed system parameters, reboot the system when it
suits you best:

$ @sys$update:autogen reboot

Page 9

Other settings

PAGEFILESIZE
When you increase the PGFLQUO UAF parameter, you should also increase the system's page file
size as needed to accommodate the new PGFLQUO parameter. Autogen (see the system
parameters section) also calculates new values for the swap, page and sysdump files, unless
instructed not to do so by specifying a directive in sys$system:modparams.dat or by not
specifying the genfiles phase.
You can also use the sys$update:swapfiles.com procedure to set the pagefilesizemanually:

$ @sys$update:swapfiles
To leave a file size at its current value type a
carriage return in response to its size prompt.
Current file sizes are:

Directory SYS$SPECIFIC:[SYSEXE]

PAGEFILE.SYS;2 1056800
SYSDUMP.DMP;4 208583
SWAPFILE.SYS;3 16400

Total of 4 files, 1682393 blocks.

There are 10110396 available blocks on SYS$SYSDEVICE.

Enter new size for paging file:
Enter new size for system dump file:
Enter new size for swapping file:
$

Installing GNV

Introduction

GNV stands for GNU is not VMS. It is a set of open source commands and utilities that are ported to
OpenVMS. The GNV kit contains a port of the bash shell, the gnu diff utilities, the gnu file utilities, the
gnu find utilities, gawk, grep, gzip, less, gnu make, man, sed, gnu shell utilities, gnu text utilities,
(un)zip, a vi wrapper for tpu, vms(un)tar and wrappers for ar, cc, gcc and cpp. This list is not
complete and more UNIX utilities become available with every new version of the GNV kit.

GNV is an open source project with a web page <http://gnv.sourceforge.net> and several mailing
lists.

If you are planning to add tools to GNV, join the gnv developer list.

Installation

First download the latest kit from the OpenVMS open source page at
<http://www.openvms.compaq.com/opensource> or from the GNV project page at
<http://gnv.sourceforge.net>.

Print the installation instructions and use them to install the kit. Please read it carefully because it
contains some important information.

The requirements for installing and using GNV are:

• must install on an ODS-5 disk

• must use on an ODS-5 disk

Page 10

http://gnv.sourceforge.net/
http://www.openvms.compaq.com/opensource
http://gnv.sourceforge.net/

To check the installation disk use the following command:

$ SHOW DEVICE DSA0: /FULL

Disk DSA0:, device type COMPAQ BB00911CA0, is online, mounted, file-oriented
 device, shareable, available to cluster, error logging is enabled, device
 supports bitmaps (no bitmaps active).

 Error count 0 Operations completed 11118695
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1204 Default buffer size 512
 Total blocks 17773524 Sectors per track 168
 Total cylinders 5290 Tracks per cylinder 20
 Logical Volume Size 17773524 Expansion Size Limit 17793024

 Volume label "ALPHASYS" Relative volume number 0
 Cluster size 3 Transaction count 1249
 Free blocks 10110408 Maximum files allowed 2221690
 Extend quantity 5 Mount count 1
 Mount status System Cache name "_DSA0:XQPCACHE"
 Extent cache size 64 Maximum blocks in extent cache 1011040
 File ID cache size 64 Blocks in extent cache 237132
 Quota cache size 0 Maximum buffers in FCP cache 630
 Volume owner UIC [1,1] Vol Prot S:RWCD,O:RWCD,G:RWCD,W:RWCD

 Volume Status: ODS-5, subject to mount verification, protected subsystems
 enabled, write-through caching enabled, access dates enabled, hard links
 enabled.

Disk 1DKA600:, device type COMPAQ BB00911CA0, is online, member of shadow set
 DSA0:, error logging is enabled.

 Error count 0 Shadow member operation count 10118018
 Allocation class 1

And this is not all the information but the important bit is at the bottom of the example text. Right after
the Volume Status: header it says ODS-5 in this case. So this disk should be OK for use. Also note
that hard links are enabled. For UNIX portability it is generally a good idea to have this enabled. It is
also a good idea to enable access dates on a volume because this is a POSIX requirement.

We also recommend using multi member shadow sets. First of all, shadow sets are more secure, i.e.,
you won't lose all your data when a disk breaks down, but also because shadow set names have no
“$”-sign in them. The “$”-sign has a special meaning in UNIX shell scripts. To use a “$”-sign in a
name you'll have to escape the “$”-sign with a “\”-sign.

By the way you can and should at least use single member shadow sets to prevent this got-ya.

To make a disk ODS-5 compatible use the following command:

$ SET VOLUME <device>: /STRUCTURE=5

To enable hard links and access dates use the following command:

$ SET VOLUME <device>: /VOLUME_CHARACTERISTICS=(HARDLINKS, ACCESS_DATES)

Be aware that enabling hard links can take a considerable amount of time!

Everything you ever wanted to know about shadowing and a description on how you can mount your
disks as shadow sets is described in the OpenVMS documentation:HP Volume Shadowing for
OpenVMS. The “help” command can help you as well.

Page 11

http://h71000.www7.hp.com/doc/732FINAL/aa-pvxmj-te/aa-pvxmj-te.HTML
http://h71000.www7.hp.com/doc/732FINAL/aa-pvxmj-te/aa-pvxmj-te.HTML

Another thing I would like to note here is high-water marking. This is another typical OpenVMS
security feature that is on by default. High-water marking guarantees that a user cannot read data
that was not written by the user, by destroying all data in the disk block after the EOF marker. There
is a small performance penalty in doing this. Although the penalty is only marginal these days, many
people will advice you to turn it off. You can do so by giving the following command:

$ SET VOLUME <device>: /NOHIGHWATER_MARKING

Disabling high-water marking is not mandatory for the installation of GNV or the UNIX portability.

To do a default install of the current GNV software, follow these steps also described in the
documentation:

.1 Log in to the SYSTEM account (at the login prompt, enter user name SYSTEM and the
appropriate password), or an account with equivalent privileges.

.2 At the DCL prompt ($), go to the directory where you saved the executable you downloaded from
the Internet and extract the PCSI kit by running the executable:

$ RUN DEC-AXPVMS-GNV-V0106-002-1.PCSI_SFX_AXPEXE

.3 Type the following command, as shown:

$ PRODUCT INSTALL GNV

.4 When you enter the PRODUCT INSTALL command, the system responds with a display similar to
the following:

The following product has been selected:
 DEC AXPVMS GNV V1.6 Layered Product

 Do you want to continue? [YES]

Continue the procedure by pressing the ENTER key for the default answer (YES). The procedure
might take several minutes and numerous messages might be displayed on the screen.
In response to each prompt displayed by the system, choose the default answer by pressing the
ENTER key.

.5 To use GNV we need to do some system wide setup. To do this we start the following DCL
command procedure:

$ @SYS$STARTUP:GNV$STARTUP.COM

To do this setup every time we boot our system we need to add the above command to the
system startup procedure SYS$MANAGER:SYSTARTUP_VMS.COM . So fire up the editor:

$ EDIT SYS$MANAGER:SYSTARTUP_VMS.COM

Go to the bottom of the file (<Do>bottom) and enter the following lines before the $ EXIT:

$!
$! GNV
$!
$ file := SYS$STARTUP:GNV$STARTUP.COM
$ IF F$SEARCH(file) .NES. "" THEN @'file'
$!

And exit the editor with <Crtl>Z.

Page 12

Note: The GNV$STARTUP.COM procedure uses the procedure
sys$common:[sys$startup]gnv_destination.com to defines the location where GNV was
installed. You will have to modify this procedure if you move GNV to a different location by hand.

.6 There's also some user setup that we'll need to do. For our current login session do the following:

$ IF F$TRNLNM(“GNU”,"LNM$SYSTEM_TABLE") .NES. “” THEN @GNU:[LIB]GNV_SETUP.COM

And if we want this user setup to happen when you log in, we must add the above line to our
SYS$LOGIN:LOGIN.COM. This counts for every user on your system who wants to use the GNV
tools. If we want this to happen for every user on our system, we could add the line to the system
wide login procedure SYS$MANAGER:SYLOGIN.COM ($ EDIT
'F$TRNLNM(“SYS$SYLOGIN”)'.COM). Just remember to add the line before the EXIT statement
(login scrips usually do things depending on the current mode login (F$MODE), note that the gnv
setup procedure must be made to work in interactive mode if you plan to use it on the command
line).

And of course, no reboot is needed.

Process quotas
Managing process quotas is another OpenVMS stronghold. It allows the system to manage the
system resources and maintain an acceptable performance for all processes on the system.

The following recommendation comes from the July 2003 issue of “Optimizing Java Technology
Software Performance on HP OpenVMS”. You can find this document at the HP OpenVMS e-
Business Technology page http://h71000.www7.hp.com/ebusiness/technology.html.

Please note that the suggested quota's are a minimum requirement for UNIX compatibility. These
quota's are specified for user accounts running JAVA applications, but in general its a good idea to
give porters and users running ported open source software the same quota's. The look and feel
(performance) on OpenVMS will more closely resemble the look and feel on other platforms.

Account quotas

Log is as user SYSTEM and go to the SYS$SYSTEM directory:

$ SET DEFAULT SYS$SYSTEM:

Start the account management program:

$ MCR AUTHORIZE

Show your account settings (in the example below the DEFAULT account is shown, this is a special
account used for account creation):

Page 13

http://h71000.www7.hp.com/ebusiness/technology.html

UAF> show default

Username: DEFAULT Owner:
Account: UIC: [200,200] ([DEFAULT])
CLI: DCL Tables: DCLTABLES
Default: [USER]
LGICMD:
Flags: DisUser
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), (none) (non-interactive)
Maxjobs: 0 Fillm: 100 Bytlm: 64000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 150 JTquota: 4096
Prclm: 8 DIOlm: 150 WSdef: 2000
Prio: 4 ASTlm: 250 WSquo: 4000
Queprio: 4 TQElm: 10 WSextent: 16384
CPU: (none) Enqlm: 2000 Pgflquo: 50000
Authorized Privileges:
 NETMBX TMPMBX
Default Privileges:
 NETMBX TMPMBX
UAF>

We are going to change the following minimum account quotas:

Parameter Name Value IA64
Value

FILLM 4096

WSDEF 2048 4096

WSQUOTA 4096

WSEXTENT 16384

PGFLQUO 2097152

BYTLM 400000

BIOLM 150

DIOLM 150

TQELM 100

To change the values of the parameters do the following:

UAF> MODIFY <account> /<parameter>=<value>

You can change multiple parameters in th same command just add another /<parameter>=<value>
for each value you need to change. To change the WSDEF, WSQUO and WSEXTENT for the
DEFAULT account you would enter the following command:

UAF> MODIFY DEFAULT /WSDEF=2048 /WSQUO=4096 /WSEXTENT=16384

You exit the AUTHORIZE utility by typing EXIT, or <Ctrl>Z (It may be possible that the terminal

Page 14

emulator you are using correctly maps the EXIT function to the F10 function key) .

As said before, the DEFAULT account is used as a template for the creation of new accounts. If you
want to raise the default quotas for all new accounts you are going to create on your system, it may
be a good idea to modify the DEFAULT account.

Changing the default account will not change any setting for existing accounts. Check and modify
existing accounts as needed

Setting up porting accounts
So far we have set the correct environment for our porting attempts. Lets summarize the steps
involved. To create porting accounts one has to follow a few steps:

• Setting up the OpenVMS porting system with the right system parameters

• Installing and starting GNV, compilers and other porting tools

• Setting up the default UAF account

• Creating additional porting accounts and/or modifying existing accounts.

• Creating and modifying home directories for porters.

After that, in order to use the changed account settings, you must log out and back in again.

creating additional accounts

To create additional porting accounts, you can use the following commands:

$ mcr authorize
UAF> add 'user' /uic=['group','member'] /device='userdevice': /directory=['user']
/passw='secret'/flag=nodisuser/nopwdexp
UAF> exit
$ create/dir 'userdevice':['user'] /owner='user'
$ create/dir 'userdevice':['user'.temp]/owner='user'
$
$ create 'userdevice':['user']login.com
$! login.com for OpenOffice portingroup member
$
$ set term/dev=vt300
$ set term/line/insert
$! start gnv
$ @GNU:[lib]GNV_SETUP.COM
$!
$! setup tools
$ set proc/parse_style=extended
$ set process /case_lookup=(blind)
$ define/job decc$pipe_buffer_size 65000
$
$
$ scratch = f$trnlnm("sys$login") - "]" + ".temp]"
$ define/job sys$scratch 'scratch'
$!
$ exit
<Ctrl>Z

$ create 'userdevice':['user'].bashrc
.bashrc
#
PATH=$PATH:/usr/bin:/usr/local/bin
export PATH

Page 15

export GNV_DISABLE_DCL_FALLBACK=1
<Ctrl>Z
$

A procedure for creating a number of porting users including a example run can be found in appendix
3

Page 16

PART III: Hints and tips on using the porting environment
and the GNV tools

Working with GNV
When you have installed GNV correctly you should be able to use UNIX commands like ls right from
DCL. However if you have LSE installed the ls command will start the LSE editor instead.

When you type bash at the DCL prompt. The bash shell is started and from that point on everything
works as if you were using a UNIX box. There are however some minor but important differences.
You may know that UNIX systems use a hierarchical file-system and OpenVMS does not. However
some of the important hierarchy is mimicked under OpenVMS. By default the / directory points to the
OpenVMS GNU:[000000] directory. The /bin directory points to the OpenVMS GNU:[bin] directory.
Etc. In short the / directory is not the root of a disk!

You can access other locations by typing /device-name or concealed device logical/directory. I.E.
DSA50:[kits.gnu] becomes /dsa50/kits/gnu.

When in bash you can enter most DCL commands, unless there is a name conflict like the ls - LSE
problem. In that case you can enter the bash dcl command and enter the DCL command behind it.
I.E. the DCL LS Readme command becomes dcl “ls Readme” in bash and opens the Readme file in
LSE.

If you don't want bash to “Fall Back” to DCL to execute commands, do the following in BASH:

bash$ export GNV_DISABLE_DCL_FALLBACK=1

We recommend putting this command in the .bashrc procedure in your login directory. See the
example procedure in the “creating additional accounts” section.

By the way you can always use the BASH dcl command to execute any DCL command!

Tips
• always work on ODS-5 disks

$ SET VOLUME <device>: /STRUCTURE=5

• always enable ODS-5 extended filename parsing
$ SET PROCESS /PARSE_STYLE=EXTENDED

(you can put this line in your LOGIN.COM)

• because of the way bash handles pipes at the moment we need to do the following
$ DEFINE/JOB DECC$PIPE_BUFFER_SIZE=65000

(you can put this line in your LOGIN.COM)

• the best way to handle UNIX symbolic links is to use hard links on the disk you are working from
$ SET VOLUME <device>: /VOLUME_CHARACTERISTICS=(HARDLINKS)

Please note that this can take a considerable amount of time.

• it may be necessary to support POSIX style access dates
$ SET VOLUME <device>: /VOLUME_CHARACTERISTICS=(ACCESS_DATES)

• when running configure scripts, it may be a good idea to disable DCL fall back
bash$ export GNV_DISABLE_DCL_FALLBACK=1

(you can put this in your .bashrc)

If you want to know more about using UNIX or bash, there is plenty of information available on the
Internet. If you like books better, take a look at the offerings from O'Reilly <http://www.oreilly.com/>.

I suggest you do take some time to learn the UNIX environment before continuing.

Page 17

http://www.oreilly.com/

Part IV: Building open source software
Most of you probably know that open source means that the software is usually distributed in source
form. To use the software on your system you need to build it yourself.

To make this building much easer the GNU community developed the GNU build tools. By the way,
these tools not only make your life much easer, they also make the life of the open source
developers much easer.

Now let's look at how you would build some open source software on a UNIX or Linux box.

.1 Download the source distribution from the Internet. Most of the time this will be a .tar.gz file but
you'll also find .tgz, .tar.Z .tar.bzip2 or .zip files.

.2 Create a directory
% mkdir <name>

.3 Go to the directory you just created
% cd <name>

.4 Unpack the file (some options may not work on OpenVMS yet)

• .tar.gz % zcat <filename> | tar xvf -

or % tar xvzf <filename>
or % gunzip <filename>
and % tar xvf <filename - .gz>

• .tgz see .tar.gz

• .tar.Z see .tar.gz
or % uncompress <filename>

and % tar xvf <filename - .Z>

• .tar.bz2 % bz2cat <filename> | tar xvf -

or % bunzip2 <filename>
and % tar xvf <filename - .bz2>

• .zip % unzip <filename>

.5 Look for the configure script. This script may be in the directory you're in, but it may also be in the
directory that was created by unpacking the distribution file. I.e. If the file you downloaded from
the Internet was called tar-1.2.4.tar.gz it is possible that you now have a directory named tar-1.2.4
in your current directory. Enter that directory to look for a configure file. If you don't find one look
for files with uppercase names like README or INSTALL.

.6 When you found the configure script, run it
% ./configure

.7 When all go's well you can build the executable(s)
% make

.8 And install the package (usually you must first become the root user before you can install
something)
% make install

And that's all folks.

Well, that was all when everything works the way it's supposed to. And even on a UNIX box things
can go wrong. To analyze what went wrong do the following:

• read the files with uppercase names and find out if you meet the prerequisites, find out if you
need to do something special for your UNIX (OpenVMS) version (after all UNIX (OpenVMS) !=
UNIX)

• try ./configure --help this may give you an idea about extra parameters you may have to specify

Page 18

with the ./configure command

• check the files that were generated by the configure script: config.cache, config.log, config.status,
config.h and Makefile(s)

If this didn't help you may need to make your hands dirty.

The GNU build system
Didn't I say before that the GNU build system would make your life much easer? Well it does. But let
me first explain what may go wrong in the last example. The configure script and the Makefile.in
file(s) may have been created before your UNIX (OpenVMS!) system or system version came into
existence, so it doesn't know about your systems specifics.

Thinking about OpenVMS for a moment, probably none of the configure scripts and make files out
there, know anything about our GNV environment on OpenVMS

But let's get back to the problem at hand.

To make the configure script and the Makefile.in file(s) aware of our systems specifics we will need to
add some steps to our build example.

The following steps come between steps 5 and 6:

.a % aclocal

.b % autoconf

.c % automake -a

To make this work, your system should have these packages and GNU make, m4, texinfo and GNU
tar readily installed. For most open source UNIX clones like Linux, FreeBSD, NetBSD and MacOS
X, this is true. But for many commercial UNIX systems this isn't the case. As for OpenVMS, only
GNU make is available at the moment.

The best thing for most commercial UNIX systems is to check out if the manufacturer of your UNIX
system made the missing tools available for download. If not check out the latest versions of the
missing tools from the GNU web site. If nothing worked out, you are in the same position as us with
our GNV environment on OpenVMS.

At this point I think that it should be clear to us that we need all these tools a.s.a.p.

If you want to know more about the gnu build system, take a look at the following web site(s):

GNU Autoconf, Automake and Libtool: http://sources.redhat.com/autobook/

Recommendation for OpenVMS
Because of constant updates to GNV we recommend to get the latest GNV sources from the CVS
repository and build the GNV kit yourself. See the build instructions on http://www.4ovms.dyndns.org

Don't forget to raise the pipe buffer size.

bash$ dcl “define/job DECC\$PIPE_BUFFER_SIZE 65000”

And don't forget to disable DCL fall back.

bash$ export GNV_DISABLE_DCL_FALLBACK=1

Always check the configure script for conftest.dir. Change the name of this file to something like
conftest.ddd

bash$ mv configure configure.org

Page 19

http://www.4ovms.dyndns.org/
http://sources.redhat.com/autobook/

bash$ sed 's/conftest\.dir/conftest\.ddd/g' configure.org > configure

Use the configure option --build=<Processor>-<OS maker>-<OS name>. For OpenVMS Alpha the
configure option is --build=alpha-hp-vms.

Because the GNV bash version is somewhat outdated, some shell scripts do not work. One of those
scripts is called depcomp. This script is used to determine dependency's during compilation. To get
rid of this dependency checking, you can add the --disable-dependency-tracking option to the
configure command.

Page 20

The OpenVMS C runtime library
The C Run Time Library or CRTL is an OpenVMS shared library containing most of the “standard” C
functions. I quoted the word standard because a) there are a lot of standards and I didn't say witch
one. b) every standard is bit of a moving target.

Since the DII COE initiative, HP intends to make the CRTL compliant to the latest X-Open standard.
Because of the architectural differences between OpenVMS and UNIX this is not an easy task,
especially if you also want to maintain backwards compatibility.

The OpenVMS CRTL developers decided to add these new features gradually with every new
OpenVMS and CRTL release.

HP also decided that these new features will become available on both the Alpha and the new
Itanium architecture. Some features may also become available on the VAX, but because ODS-5
extended filename support is not available on the VAX, the functionality that is essential to open
source porting will probably never become available on the VAX.

The new CRTL features can be categorized in two groups:

.1 existing functions with new and more standard functionality

.2 completely new functions to make the CRTL more standard (X-Open v.6) compliant.

For the functions in group one the classic behavior is standard and to use the new functionality you
need to set feature switches (more on those later).

The functions in group two can be divided in two more groups

.1 functions that should work the same in both the classic OpenVMS environment as in the new
UNIX like environment

.2 functions that should not work the same in both environments

For this last group, think about functions that use or return a path. For this group the behavior of
these functions is determined by the previously mentioned feature switches.

So what are these feature switches and how can I set them?

I will not explain what feature switches there are and what they do exactly because you can read all
about them in the CRTL help, the CRTL release notes and the CRTL Reference manual. But I will
show you some of the interesting new ones in OpenVMS 7.3-2. And I will show you how you can
change their values.

So let's first get to the most interesting new feature switch, especially when you're new to porting. It is
DECC$UNIX_LEVEL. The text below is from the CRTL reference manual (CRTL 1-38):

With the DECC$UNIX_LEVEL logical name, you can manage multiple C RTL feature logical
names at once. By setting a value for DECC$UNIX_LEVEL from 1 to 100, you determine the
default value for groups of feature logical names. The value you set has a cumulative effect: the
higher the value, the more groups that are affected. Setting a value of 20, for example, enables all
the feature logicals associated with a DECC$UNIX_LEVEL of 20, 10 and 1.

The principal logical names affecting UNIX like behavior are grouped as follows:

1 General corrections
10 Enhancements
20 UNIX style file names
30 UNIX style file attributes
90 Full UNIX behavior - No concessions to OpenVMS

Page 21

Level 30 is appropriate for UNIX like programs such as BASH and GNV.

The DECC$UNIX_LEVEL values and associated groups of affected feature logical names are:

General Corrections (DECC$UNIX_LEVEL == 1)

DECC$FIXED_LENGTH_SEEK_TO_EOF 1
DECC$POSIX_SEEK_STREAM_FILE 1
DECC$SELECT_IGNORES_INVALID_FD 1
DECC$STRTOL_ERANGE 1
DECC$VALIDATE_SIGNAL_IN_KILL 1

General Enhancements (DECC$UNIX_LEVEL == 10)

DECC$ARGV_PARSE_STYLE 1
DECC$EFS_CASE_PRESERVE 1
DECC$STDIO_CTX_EOL 1
DECC$PIPE_BUFFER_SIZE 4096
DECC$USE_RAB64 1

UNIX style file names (DECC$UNIX_LEVEL == 20)

DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION 1
DECC$EFS_CHARSET 1
DECC$FILENAME_UNIX_NO_VERSION 1
DECC$FILENAME_UNIX_REPORT 1
DECC$READDIR_DROPDOTNOTYPE 1
DECC$RENAME_NO_INHERIT 1
DECC$GLOB_UNIX_STYLE 1

UNIX like file attributes (DECC$UNIX_LEVEL == 30)

DECC$EFS_FILE_TIMESTAMPS 1
DECC$EXEC_FILEATTR_INHERITANCE 1
DECC$FILE_OWNER_UNIX 1
DECC$FILE_PERMISSION_UNIX 1
DECC$FILE_SHARING 1

UNIX compliant behavior (DECC$UNIX_LEVEL == 90)

DECC$FILENAME_UNIX_ONLY 1
DECC$POSIX_STYLE_UID 1
DECCUSE_JPI_CREATOR 1
DECC$DETACHED_CHILD_PROCESS 1

Notes:

• Defining a logical name for an individual feature logical supersedes the default value
established by DECC$UNIX_LEVEL for that feature.

• Future revisions of the C RTL may add new feature logicals to a given DECC$UNIX_LEVEL.
For applications that specify that UNIX level, the effect is to enable those features by default.

Please note that not all the available feature switches are listed in the quote. The ones not listed are
not part of any UNIX level! Read the CRTL help, release notes and documentation for a full list of
supported feature switches and their intended use.

You may already have noticed one way of setting these feature switches. You can define a logical
with the same name and appropriate value. And because the feature switches alter the behavior at
runtime, you don't have to recompile while playing with the switches. But when you are finished
determining the appropriate values for the switches you may want to set their values from within your
program. You can of course do this by setting the logical from within your program, but there is a
much better way.

The CRTL functions decc$feature_get_index, decc$feature_get_name, decc$feature_get_value, and
decc$feature_set_value are specially designed for this task.

Page 22

Below you'll see a small example (CRTL REF-82): program.

static int set_feature_default(char *name, int value)
{
 int index = decc$feature_get_index(name);
 if (index == -1 || decc$feature_set_value(index, 0, value) == -1)
 {
 perror(name);
 return -1;
 }
 return 0;
}

static void my_init(void)
{
 set_feature_default("DECC$POSIX_SEEK_STREAM_FILE" , TRUE);
 set_feature_default("DECC$ARGV_CASE_PARSE_STYLE" , TRUE);
 set_feature_default("DECC$EFS_CASE_PRESERVE" , TRUE);
 set_feature_default("DECC$FILE_SHARING" , TRUE);
}

It is not too difficult to add code like this to a program, but there's a catch.

Feature switches like DECC$ARGV_PARSE_STYLE need to be set before the arguments are being
parsed and this happens somewhere between image activation and the call to the programs main
function.

The process of what happens before your program starts is documented in the OpenVMS
Programming Concepts Manual. In chapter 18 you'll find a complete flow of what happens and when
(see picture below).

Page 23

The important thing to note here is the LIB$INITIALIZE function. What we are going to do is create a
source file that defines a LIB$INITIALIZE function that points to a function that sets the feature
switches to their appropriate values.

Now let's go back to the example I used above. An enhanced version of the example on page CRTL
REF-83 is presented below.

#pragma extern_model save
#pragma extern_model strict_refdef "LIB$INITIALIZE" nowrt, long
#if __INITIAL_POINTER_SIZE
pragma __pointer_size __save
pragma __pointer_size 32
#else
pragma __required_pointer_size __save
pragma __required_pointer_size 32
#endif
 /* Set our contribution to the LIB$INITIALIZE array */
void (* const iniarray[])() = {my_init, } ;
#if __INITIAL_POINTER_SIZE
pragma __pointer_size __restore
#else

Page 24

pragma __required_pointer_size __restore
#endif
#pragma extern_model restore

/*
** Force a reference to LIB$INITIALIZE to ensure it
** exists in the image.
*/
int LIB$INITIALIZE();
globaldef int (*lib_init_ref)() = LIB$INITIALIZE;

Put both parts of the example in one source file. Compile and link with your program to make it work.
The beauty of it is that you don't have to change the program you are porting to set the feature
switches!

If you want to see a more complete example, take a look at
GNU:[src.GNV.CRTLSUP.SRC]VMS_CRTL_INIT.C file. This file is used by some of the GNV tools.

Recommendation
A good starting point is UNIX level 30, but don't use the DECC$UNIX_LEVEL feature switch. Set the
individual feature switches that make up UNIX level 30 and increase DECC$PIPE_BUFFER_SIZE to
at least 8192. The reasons for not using the DECC$UNIX_LEVEL feature switch are compatibility
with OpenVMS 7.3-1 and the simple fact that you may not need all the feature switches that make up
level 30 or you want to use different values (see the recommendation for
DECC$PIPE_BUFFER_SIZE).

Page 25

Macros

Predefined macros

The list below is a list of predefined macros on OpenVMS 7.3-2 Alpha using the Standard DECC C
compiler version 6.5.

These macros are in effect at the start of the compilation.

----- ------ --- -- ------ -- --- ----- -- --- ------------

 __G_FLOAT=1 __DECC=1 vms=1 VMS=1 __32BITS=1 __PRAGMA_ENVIRONMENT=1

 __CRTL_VER=70320000 __vms_version="V7.3-2 " CC$gfloat=1 __X_FLOAT=1

 vms_version="V7.3-2 " __DATE__="Feb 7 2004" __STDC_VERSION__=199901L

 __DECC_MODE_RELAXED=1 __DECC_VER=60590001 __VMS=1 __ALPHA=1

 VMS_VERSION="V7.3-2 " __IEEE_FLOAT=0 __VMS_VERSION="V7.3-2 "

 __STDC_HOSTED__=1 __TIME__="13:54:21" __Alpha_AXP=1 __VMS_VER=70320022

 __BIASED_FLT_ROUNDS=2 __INITIAL_POINTER_SIZE=0 __STDC__=1

 __LANGUAGE_C__=1 __vms=1 __alpha=1 __D_FLOAT=0

The following macros are important for porting:

__VMS,
__vms

Are the ones we can use for general OpenVMS specific stuff

__ALPHA,
__Alpha_AXP,
__alpha

Can be used for Alpha specific stuff

__VAXC,
__VAX11C,
__vaxc,
__vax11c

Can be used for VAX specific stuff

__IA64,
__ia64

Can be used for Itanium (ia64) specific stuff

__VMS_VER Can be used for OpenVMS version specific stuff (please use __CRTL_VER
instead)

__DECC_VER Can be used for compiler version specific stuff

__CRTL_VER Can be used for CRTL version specific stuff

Please note that I only included the preferred format of the macros, most of them also exist without
the two dashes in front.

Other macros

There are also numerous other macros that change the behavior of one or more CRTL functions.

Page 26

_XOPEN_SOURCE_EXTENDEDMakes visible XPG4-extended features, including traditional UNIX
based interfaces not previously adopted by X/Open.

Standard Selected: XPG4 V2

Other Standards Implied: XPG4, ISO POSIX-2, ISO POSIX-1,
ANSI C

_XOPEN_SOURCE Makes visible XPG4 standard symbols and causes
_POSIX_C_SOURCE to be set to 2 if it is not already defined with
a value greater than 2.

Standard Selected: XPG4

Other Standards Implied: XPG4, ISO POSIX-2, ISO POSIX-1,
ANSI C

_POSIX_C_SOURCE==199506 Header files defined by ANSI C make visible those symbols
required by IEEE 1003.1c-1995.

Standard Selected: IEEE 1003.1c-1995

Other Standards Implied: ISO POSIX-2, ISO POSIX-1, ANSI C
_POSIX_C_SOURCE==2 Header files defined by ANSI C make visible those symbols

required by ISO POSIX-2 plus those required by ISO POSIX-1.

Standard Selected: ISO POSIX-2

Other Standards Implied: ISO POSIX-1, ANSI C
_POSIX_C_SOURCE==1 Header files defined by ANSI C make visible those symbols

required by ISO POSIX-1.

Standard Selected: ISO POSIX-1

Other Standards Implied: ANSI C
_STDC_VERSION__==199409_ Makes ISO C Amendment 1 symbols visible.

Standard Selected: ISO C Amendment 1.

Other Standards Implied: ANSI C
_ANSI_C_SOURCE Makes ANSI C standard symbols visible.

Standard Selected: ANSI C.

Other Standards Implied: None.
_POSIX_EXIT To enable the ISO POSIX-1 compatible exit function.
_BSD44_CURSES This macro selects the Curses package from the 4.4BSD Berkeley

Software Distribution.
_VMS_CURSES This macro selects a Curses package based on the VAX C

compiler. This is the default Curses package.
_SOCKADDR_LEN This macro is used to select 4.4BSD-compatible and XPG4 V2-

compatible socket interfaces. These interfaces require support in
your underlying TCP/IP software. Contact your TCP/IP vendor to
inquire if the version of TCP/IP software you run supports 4.4BSD
sockets. (HP TCP/IP supports this feature, as far as I can tell,
Process Softwares Multinet and TCPware don't)

_LARGEFILE The C RTL provides support for compiling applications to use file
sizes and offsets that are two gigabytes (GB) and larger. This is
accomplished by allowing file offsets of 64-bit integers.

__USE_LONG_GID_T To compile an application for 32-bit UID/GID support.
_DECC_SHORT_GID_T To compile an application for 16-bit UID/GID support
_USE_STD_STAT This macro is used to select the UNIX style stat structures. (New in

OpenVMS 8.2)

Please read the CRTL help and/or CRTL Reference Manual for more information.

Page 27

Recommendation
Please don't use general macros like VMS, vms , __VMS or_ _vms. Use __CRTL_VER instead. The
C Runtime Library is becoming more “standard” with every new version of the CRTL. Fixes may no
longer be necessary in newer versions of the CRTL. In some cases program functionality has been
crippled with #ifndef VMS in a way that is no longer necessary.

Using __CRTL_VER will allow us to control more precisely what needs to be changed for the many
different versions of the CRTL.

When the macro __CRTL_VER doesn't exist, define it with the value of __VMS_VER.

if defined(__VMS_VER) && !defined(__CRTL_VER)
define __CRTL_VER __VMS_VER
endif

When compiling open source programs in DCL, add the /DEFINE=_POSIX_EXIT to your CC
command! This is the default when compiling under bash.

Page 28

GCC wrapper
The GNV kit does not come with gcc but with a wrapper that uses HP C and C++ compilers to do its
compilation work and it uses the standard OpenVMS Linker as a substitute for ld. By the way there is
also a ar wrapper that uses the standard OpenVMS Librarian.

The GCC wrapper does quite a good job, but it isn't perfect. Also note that the HP compilers are very
strict. By this I mean that they complain immediately when something may not be entirely correct. So
we'll see a lot of warnings when compiling open source software.

You can see all the options the gcc wrapper supports by using the -h or -help option.

I would like to note the following on the behavior of the GCC wrapper, the wrapper adds the
/DEFINE=_POSIX_EXIT to the compile statement by default.

The -Wc and -Wl gcc option may come in handy if you want to add a HP CC, CPP or LINK option to
the gcc command line, that does not seem to be implemented.

One gcc option you sometimes need is -names_as_is_short. This will make the compiler case
sensitive and it allows function names with more than 32 characters.

You may get into trouble with the gcc -g option in configure scripts. Many configure scripts use this
option by default. This options is used to compile and/or link with debug information included in the
program. The problem is that on UNIX systems a program compiled and linked with debug
information doesn't start the debugger when executed. This is quite different from what we OpenVMS
people are used to. If you see the debugger prompt pop up when running a configure script, either
remove the -g option from the configure script or start configure with CFLAGS=””.

Page 29

Fork()
The fork issue is quite high on the issue list because it is quite common to Open Source programs
and we don't have this function on OpenVMS.

We do have vfork() on OpenVMS, but the implementation of vfork() on OpenVMS is also not
standard compliant. We can however use it to work around most of the fork() calls in opensource
software.

Before we dig into the workarounds, lets first determine what fork() is supposed to do.

The fork() function is the UNIX standard way to create a new process. The new (child) process is an
exact duplicate of the calling (parent) process except:

• the child process has a unique process ID

• the child process ID does not match any active process group ID

• the child process has a different parent process ID

• the child process has its own copy of the parent's open file descriptors

• the child process has its own copy of the parent's open directory streams

• the child process may have its own copy of the parent's message catalog descriptors

• the child process' values of tms_utime, tms_stime, tms_cutime and tms_cstime are set to 0

• the time left until an alarm clock signal is reset to 0

• all semadj values are cleared

• file locks set by the parent process are not inherited by the child process

• the set of signals pending for the child process is initialized to an empty set

• interval timers are reset in the child process

After fork(), both parent and child processes are capable of executing independently before either
one terminates.

The fork() function returns 0 to the child process and returns the process ID of the child process to
the parent process. Otherwise, -1 is returned to the parent process, no child process is created and
errno is set to indicate the error.

The vfork() function is on most systems identical to the fork() function. On some systems, child's
created with vfork() can share data or code segments with their parent process.

On OpenVMS the vfork() function only provides the setup necessary for a subsequent call to an exec
function. No child process is create by a vfork call!

When vfork is called:

• it saves the return address (the address of the vfork call) to be used later as a return address
for the call to an exec function

• it saves the current context

• it returns the integer 0 the first time it is called (before the call to an exec function is made).
After the exec call is made, the exec function returns control to the parent process, at the
point of the vfork() call, and returns the process ID of the child as the return value.

Some of you may already see some similarities between fork() and OpenVMS vfork(). If fork() is
closely followed by an exec call, we can use OpenVMS vfork() with a little work. If fork() stands on it's
own, we're still screwed.

Example 1 (from GNU tar 1.15.1 lib/rmdir.c):

Page 30

#ifndef __VMS
 cpid = fork ();
#else /* VMS */
 cpid = vfork ();
#endif /* VMS */
 switch (cpid)
 {
 case -1: /* cannot fork */
 return -1; /* errno already set */

 case 0: /* child process */
 execl ("/bin/rmdir", "rmdir", dpath, (char *) 0);
 _exit (1);

 default: /* parent process */
.
.
.
 return 0;
 }

Example 2 (from GNU tar 1.15.1 lib/rtapelib.c):

#ifndef __VMS
 status = fork ();
#else /* VMS */
 status = vfork ();
#endif /* VMS */
 if (status == -1)
 {

int e = errno;
free (file_name_copy);
errno = e;
return -1;

 }

 if (status == 0)
 {

/* Child. */
#ifdef __VMS
 save_stdin = dup (STDIN_FILENO);

save_stdout = dup (STDOUT_FILENO);
#endif /* VMS */

close (STDIN_FILENO);
dup (to_remote[remote_pipe_number][PREAD]);
close (to_remote[remote_pipe_number][PREAD]);

#ifndef __VMS
close (to_remote[remote_pipe_number][PWRITE]);

#endif /* VMS */
close (STDOUT_FILENO);
dup (from_remote[remote_pipe_number][PWRITE]);

#ifndef __VMS
close (from_remote[remote_pipe_number][PREAD]);

#endif /* VMS */
close (from_remote[remote_pipe_number][PWRITE]);

sys_reset_uid_gid ();

if (remote_user)
 execl (remote_shell, remote_shell_basename, remote_host,

 "-l", remote_user, rmt_command, (char *) 0);
else
 execl (remote_shell, remote_shell_basename, remote_host,

Page 31

 rmt_command, (char *) 0);

/* Bad problems if we get here. */

/* In a previous version, _exit was used here instead of exit. */
error (EXIT_ON_EXEC_ERROR, errno, _("Cannot execute remote shell"));

 }

 /* Parent. */
#ifdef __VMS
 {
 int status;
 status = dup2 (save_stdin, STDIN_FILENO);
 if (status < 0)
 {
 error (EXIT_ON_EXEC_ERROR, errno, _("Error resoring stdin"));
 }
 status = dup2 (save_stdout, STDOUT_FILENO);
 if (status < 0)
 {
 error (EXIT_ON_EXEC_ERROR, errno, _("Error resoring stdout"));
 }
 }
#endif /* VMS */
 close (from_remote[remote_pipe_number][PWRITE]);
 close (to_remote[remote_pipe_number][PREAD]);

This second example may look a little intimidating but remember that on OpenVMS the “Child” code
is actually executed by the parent. The “Child” process is created by the execl() function call not by
the vfork() function call.

Note 1: By default the OpenVMS exec call's use LIB$SPAWN to create child processes. In most
cases this is what you want, however in some cases you may want the child processes to be a
detached processes. To achieve this you can enable the DECC$DETACHED_CHILD_PROCESS
feature switch. This has some implications. See CRTL Reference Guide chapter 5.

Note 2: On OpenVMS the execlp() and execvp() functions search VAXC$PATH and not the PATH
environment variable to obtain the location of the file to execute. This can be quite problematic.

Page 32

RMS
RMS stands for Record Management System. The OpenVMS filesystem is built on RMS and all the
files on an OpenVMS system are RMS files. An RMS file is record oriented and can contain keys for
keyed access (RMS indexed files). There are many different kinds of records and countless record
attributes in RMS. As with most record oriented systems, locking of files and records is something to
be very aware of. UNIX doesn't have these features and on UNIX systems it is possible for two
programs to have the same file open for writing at the same position in the file. On OpenVMS this is
impossible and you have to deal with this problem when you run into it.

Another problem is the difference between stream-lf files and variable-length records. Both files
contain records of variable length, but from a UNIX programs point of view Stream-lf files best
resemble UNIX files. However very few OpenVMS programs know how to handle stream-lf files.
OpenVMS programs typically handle files with the variable-length record type.

Page 33

Known Porting Issues
Quite a few CRTL functions still don't quite work as their UNIX counterparts and some functions are
still missing. To give you some examples:

The vfork function does not behave exactly like its UNIX counterpart (read the section on vfork in the
CRTL reference manual). If a program uses vfork it will probably check the existence of vfork during
configure and this is also a situation where configure will hang. The solution to the hang is quite
simple. Log in using a different session and look for the child process of your previous session. Kill it
and the configure script continues.

And while we're at it, OpenVMS unfortunately has no fork function yet, but there are many known
workarounds available is only we know where.

This is not a definitive guide on how to port open source to OpenVMS. Things are changing quite
rapidly. We should continue to keep this document up to date with the current state of OpenVMS and
the GNV kit.

We found a list of known areas where compatibility problems occur when porting from UNIX to
OpenVMS on comp.os.vms, This list is the basis for a list we maintain. This list can be found in
appedix 2: List of known issues.

Legend:

issue#: sequential number (1...31 from cov list, rest locally generated)
sev/prio: severity to our port (VMS encoded..)/our priority rating (VMS encoded..)

The severity and priority are encoded from the OpenOffice porting group viewpoint.

(default = I/0)
status: VMS encoded activity from the OpenOffice group viewpoint.

CUR: actively being worked on.

COM: no local activity due to lack of local resources.

LEF: waiting for something under local control (f.i. Media).

CEF: waiting for something under external control (f.i. patch from VMS-engineering).

(default = LEF)
description: Short description of the issue.
explanation,
status:

Explanation of the issue and known workarounds, fixes and viewpoints.

We added some comments to some of the items (see (OO)).

Page 34

Part V: Appendices

Appendix 1: Example port of m4
In this example I use GNU m4 1.4. By the way as you can see below I use POSIX.2 PAX to untar the
tar file.

$ set process /parse_style=extended
$ gunzip m4-1.4.tar.gz
$ pax -rvf m4-1.4.tar
USTAR format archive assumed
m4-1.4/README
m4-1.4/NEWS
m4-1.4/TODO
m4-1.4/THANKS
m4-1.4/COPYING
m4-1.4/INSTALL
.
.
.

Let me not bore you with a long list of files.

Before I start bash I'll raise DECC$PIPE_BUFFER_SIZE:

$ define/job decc$pipe_buffer_size 65000

Start Bash:

$ bash

Disable DCL fallback:

bash$ export GNV_DISABLE_DCL_FALLBACK=1
bash$ ls
m4-1.4 m4-1.4.sav m4-1.4.tar
bash$ cd m4-1.4
bash$ ls
BACKLOG Makefile.in TODO checks doc mkinstalldirs
COPYING NEWS acconfig.h config.h.in examples src
ChangeLog README aclocal.m4 configure install-sh stamp-h.in
INSTALL THANKS c-boxes.el configure.in lib

let's start configure with following options:

`--build=build'

Specifies the type of system on which the package will be built. If not specified, the default will be the
same configuration name as the host.

The parameter for the build option is in the following form:

<processor>-<OS Manufacturer>-<OS name>

Note that we don't have to set the execute bit to start the configure script.

bash$./configure --build=alpha-hp-vms

Page 35

creating cache ./config.cache
checking for mawk... no
checking for gawk... gawk
checking for gcc... gcc
.
.
.
creating Makefile
creating doc/Makefile
creating lib/Makefile
creating src/Makefile
creating checks/Makefile
creating examples/Makefile
creating config.h

Wow, no problems so far. Let's try make.

bash$ make
for subdir in doc lib src checks examples; do \
 echo making all in $subdir; \
 (cd $subdir && make CC='gcc' CFLAGS='-g' LDFLAGS='' LIBS='' prefix='/usr/local'
exec_prefix='/usr/local' bindir='/usr/local/bin' infodir='/usr/local/info' all)
|| exit 1; \
done
making all in doc
make[1]: Entering directory `/USER50/KITS/GNU/M4/m4-1.4/doc'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory `/USER50/KITS/GNU/M4/m4-1.4/doc'
making all in lib
make[1]: Entering directory `/USER50/KITS/GNU/M4/m4-1.4/lib'
gcc -c -DHAVE_CONFIG_H -I.. -I. -g regex.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -g getopt.c

 if (optind != argc && !strcmp (argv[optind], "--"))
.............................^
%CC-I-IMPLICITFUNC, In this statement, the identifier "strcmp" is implicitly
declared as a function.
at line number 408 in file USER50:[KITS.GNU.M4.m4-1^.4.lib]getopt.c;1

 if (!strncmp (p->name, nextchar, nameend - nextchar))
.............^
%CC-I-IMPLICITFUNC, In this statement, the identifier "strncmp" is implicitly
declared as a function.
at line number 484 in file USER50:[KITS.GNU.M4.m4-1^.4.lib]getopt.c;1

 if (nameend - nextchar == strlen (p->name))
......................................^
%CC-I-IMPLICITFUNC, In this statement, the identifier "strlen" is implicitly
declared as a function.
at line number 486 in file USER50:[KITS.GNU.M4.m4-1^.4.lib]getopt.c;1
gcc -c -DHAVE_CONFIG_H -I.. -I. -g getopt1.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -g error.c

char *strerror ();
......^
%CC-W-FUNCREDECL, In this declaration, function types differ because one has no
argument information and the other has an ellipsis.
at line number 56 in file USER50:[KITS.GNU.M4.m4-1^.4.lib]error.c;1
gcc -c -DHAVE_CONFIG_H -I.. -I. -g obstack.c

 abort ();
....^
%CC-I-IMPLICITFUNC, In this statement, the identifier "abort" is implicitly

Page 36

declared as a function.
at line number 333 in file USER50:[KITS.GNU.M4.m4-1^.4.lib]obstack.c;1
gcc -c -DHAVE_CONFIG_H -I.. -I. -g xmalloc.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -g xstrdup.c
rm -f libm4.a
ar cru libm4.a regex.o getopt.o getopt1.o error.o obstack.o xmalloc.o xstrdup.o
Warning: u unrecognized switch
%LIBRAR-W-COMCOD, compilation warnings in module ERROR file
USER50:[KITS.GNU.M4.m4-1^.4.lib]error.o;1
: libm4.a
make[1]: Leaving directory `/USER50/KITS/GNU/M4/m4-1.4/lib'
making all in src
make[1]: Entering directory `/USER50/KITS/GNU/M4/m4-1.4/src'
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g m4.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g builtin.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g debug.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g eval.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g format.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g freeze.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g input.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g macro.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g output.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g path.c
gcc -c -DHAVE_CONFIG_H -I.. -I. -I./../lib -g symtab.c
gcc -o m4 m4.o builtin.o debug.o eval.o format.o freeze.o input.o macro.o
output.o path.o symtab.o ../lib/libm4.a
%LINK-W-WRNERS, compilation warnings
 in module ERROR file USER50:[KITS.GNU.M4.m4-1^.4.lib]libm4.a;1
%LINK-W-MULDEF, symbol DECC$GETOPT multiply defined
 in module DECC$SHR_EV56 file SYS$COMMON:[SYSLIB]DECC$SHR_EV56.EXE;1
%LINK-W-MULDEF, symbol DECC$GA_OPTARG multiply defined
 in module DECC$SHR_EV56 file SYS$COMMON:[SYSLIB]DECC$SHR_EV56.EXE;1
%LINK-W-MULDEF, symbol DECC$GL_OPTOPT multiply defined
 in module DECC$SHR_EV56 file SYS$COMMON:[SYSLIB]DECC$SHR_EV56.EXE;1
%LINK-W-MULDEF, symbol DECC$GL_OPTIND multiply defined
 in module DECC$SHR_EV56 file SYS$COMMON:[SYSLIB]DECC$SHR_EV56.EXE;1
%LINK-W-MULDEF, symbol DECC$GL_OPTERR multiply defined
 in module DECC$SHR_EV56 file SYS$COMMON:[SYSLIB]DECC$SHR_EV56.EXE;1
make[1]: Leaving directory `/USER50/KITS/GNU/M4/m4-1.4/src'
making all in checks
make[1]: Entering directory `/USER50/KITS/GNU/M4/m4-1.4/checks'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory `/USER50/KITS/GNU/M4/m4-1.4/checks'
making all in examples
make[1]: Entering directory `/USER50/KITS/GNU/M4/m4-1.4/examples'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory `/USER50/KITS/GNU/M4/m4-1.4/examples'

OK, we did see some warnings, but nothing too bad. let's try the m4 executable.

bash$ cd src
bash$ m4 --help
Usage: m4 [OPTION]... [FILE]...
Mandatory or optional arguments to long options are mandatory or optional
for short options too.

Operation modes:
 --help display this help and exit
 --version output version information and exit
 -e, --interactive unbuffer output, ignore interrupts
 -E, --fatal-warnings stop execution after first warning
 -Q, --quiet, --silent suppress some warnings for builtins
 -P, --prefix-builtins force a `m4_' prefix to all builtins

Page 37

Preprocessor features:
 -I, --include=DIRECTORY search this directory second for includes
 -D, --define=NAME[=VALUE] enter NAME has having VALUE, or empty
 -U, --undefine=NAME delete builtin NAME
 -s, --synclines generate `#line NO "FILE"' lines

Limits control:
 -G, --traditional suppress all GNU extensions
 -H, --hashsize=PRIME set symbol lookup hash table size
 -L, --nesting-limit=NUMBER change artificial nesting limit

Frozen state files:
 -F, --freeze-state=FILE produce a frozen state on FILE at end
 -R, --reload-state=FILE reload a frozen state from FILE at start

Debugging:
 -d, --debug=[FLAGS] set debug level (no FLAGS implies `aeq')
 -t, --trace=NAME trace NAME when it will be defined
 -l, --arglength=NUM restrict macro tracing size
 -o, --error-output=FILE redirect debug and trace output

FLAGS is any of:
 t trace for all macro calls, not only traceon'ed
 a show actual arguments
 e show expansion
 q quote values as necessary, with a or e flag
 c show before collect, after collect and after call
 x add a unique macro call id, useful with c flag
 f say current input file name
 l say current input line number
 p show results of path searches
 i show changes in input files
 V shorthand for all of the above flags

If no FILE or if FILE is `-', standard input is read.
bash$

And it works!?!

But we are far from ready.

• we need to set the necessary feature switches by linking a LIB$INITIALIZE routine to our program

• the CRTL feature switches are not the only way to make some functions behave more UNIX like.
For example you can define _POSIX_EXIT to make the CRTL exit function behave POSIX
compliant. Please note that the _POSIX_EXIT macro is already defined by the gcc wrapper!

• As an OpenVMS person, I really can't live with all these warnings

To fix the LIB$INITIALIZE problem, you could do the following (you're still in the src directory):

bash$ cp /src/GNV/CRTLSUP/SRC/VMS_CRTL_INIT.C .

Edit the Makefile in this directory to add the VMS_CRTL_INIT.C source file and VMS_CRTL_INIT.o
object file to the following lines:

SOURCES = m4.c builtin.c debug.c eval.c format.c freeze.c input.c \
macro.c output.c path.c stackovf.c symtab.c
OBJECTS = m4$O builtin$O debug$O eval$O format$O freeze$O input$O \
macro$O output$O path$O $(STACKOVF) symtab$O

Page 38

After the changes the lines should look like this:

SOURCES = m4.c builtin.c debug.c eval.c format.c freeze.c input.c \
macro.c output.c path.c stackovf.c symtab.c VMS_CRTL_INIT.C
OBJECTS = m4$O builtin$O debug$O eval$O format$O freeze$O input$O \
macro$O output$O path$O $(STACKOVF) symtab$O VMS_CRTL_INIT$O

To fix the compile warnings you'll need to make some changes to various files. Start with config.h in
the root directory of the package. When you look at this file, you'll understand why.

The linker warnings are the result of the fact that the m4 sources contain replacement functions for
the standard command-line argument parsing functions with the same name's as the standard
functions. You can either disable these replacements or do something like the following:

Go to the end of the config.h file and add the following lines:

#define getopt my_getopt
#define optarg my_optarg
#define optopt my_optopt
#define optind my_optind
#define opterr my_opterr

Now run ./configure and make again.

So in short:

bash$ make clean
bash$ make

GNU m4 also comes with some scripts to check it functionality so let's take a look how well it does.

bash$ make check
.
.
.
cd checks && make check
make[1]: Entering directory `/USER50/KITS/GNU/M4/m4-1.4/checks'
PATH=`pwd`/../src:$PATH; export PATH; \
cd . && ./check-them *[0-9][0-9].*
GNU m4 1.4
Checking 01.define
.
.
.
Checking 30.include
../doc/m4.texinfo:2078: Origin of test
30.include: stderr mismatch
1c1
< 30.include:2: m4: Cannot open no-such-file: No such file or directory

> 30.include:2: m4: Cannot open no-such-file: no such file or directory
Checking 31.include
.
.
.
Checking 57.m4exit

Failed checks were:
 30.include:err
make[1]: Leaving directory `/USER50/KITS/GNU/M4/m4-1.4/checks'
bash$

Page 39

The test that failed is only complaining about the error message not being exactly right.

All in all this looks quite good already. But things aren't always this easy.

Page 40

Appendix 2: Porting Issues
Legend:

issue#: sequential number (1...31 from cov list, rest locally generated)
sev/prio: severity to our port (VMS encoded..)/our priority rating (VMS encoded..)

The severity and priority are encoded from the OpenOffice porting group viewpoint.

(default = I/0)
status: VMS encoded activity from the OpenOffice group viewpoint.

CUR: actively being worked on.

COM: no local activity due to lack of local resources.

LEF: waiting for something under local control (f.i. Media).

CEF: waiting for something under external control (f.i. patch from VMS-engineering).

(default = LEF)
description: Short description of the issue.
explanation,
status:

Explanation of the issue and known workarounds, fixes and viewpoints.

We added some comments to some of the items (see (OO)).

Page 41

issue# sev/prio status description explanation, status

1. I/0 CUR stat and st_ino On UNIX stat.h has:

ino_t st_ino;

but on OpenVMS it has

ino_t st_ino[3];

consequently the st_ino part of the stat structure is a
value on UNIX and a pointer on OpenVMS. Generally
this means you have to replace something like

if(inode == foo.st_ino)

with

if(inode[0] == foo.st_ino[0] &&

inode[1] == foo.st_ino[1] &&

inode[2] == foo.st_ino[2[)

(OO) This issue was fixed in OpenVMS 8.2, however
you'll have to compile with -D_USE_STD_STAT (GNV)
or /DEFINE=_USE_STD_STAT.

2. I/0 COM write() to tcp/ip
socket

write() is supposed to send as much of a buffer as it can
to the output device and then return that value. On
OpenVMS write() will fail if it attempts to write more than
64k bytes to a socket. So even though write() is usually
used in a loop that cycles through until a buffer is written
out it won't work correctly on OpenVMS if the buffer is
too big. The workaround is to put in an #ifdef that
restricts the transfer to < 64k bytes at one time.

3. I/0 COM use of select() OpenVMS select() only works on sockets, it does NOT
work on files. Therefore code which uses select() to
synchronize IO for both sockets and files will not
function.

The fix is reasonably complex. For an example see:
http://seqaxp.bio.caltech.edu/pub/SOFTWARE/XTERM
_VMS_122_TOP.ZIP

4. E/16 CUR foo.tar.gz UNIX doesn't care what a file is, OpenVMS does. ODS2
will only accept one ".extension" in a file name. ODS5
will accept pretty much anything that UNIX will.

Starting with OpenVMS 7.3-2 even the system disk can
be ODS5 formatted. But be careful not all layered
products support this yet.

(OO) using new CRTL features promisses a (more)
simple port when using only ODS5 disks. At this
moment we plan to do a ODS5 only port.

Page 42

http://seqaxp.bio.caltech.edu/pub/SOFTWARE/XTERM_VMS_122_TOP.ZIP
http://seqaxp.bio.caltech.edu/pub/SOFTWARE/XTERM_VMS_122_TOP.ZIP

issue# sev/prio status description explanation, status

5. W/4 COM A zillion
warnings on
compilation

Bad news Bucky, most software is crap and you're
looking at it. The OpenVMS compilers are much pickier
by default than those on other platforms and show you
where the problems are. Your best bet in general is to
fix the warnings you see, and make the compiler air out
all the code's dirty laundry. Get your code to compile
cleanly with

/standard=ansi89/prefix=all/warn=enable=(level4,questc
ode)

and you'll save yourself a lot of trouble later on. It will
also make your code more portable.

(OO) we know from the porting newsgroup and from
direct contact that there will be lots of 64 bit issues and
typical compiler version specific workarounds in the
code. We'll try to produce clean code, but won't modify
general code just for cleanliness.

Page 43

issue# sev/prio status description explanation, status

6. E/16 CUR use of UNIX
paths

Most UNIX code thinks that it can always take a path
and add "/blah/foo.bar" to get a relative path. This will
work on OpenVMS as well so long as the initial path is
in UNIX format. However if somebody entered:
"USRDISK:[JOE.TEST]" then the full file spec will be a
hybrid: "USRDISK:[JOE.TEST]/blah/foo.bar" which
won't fly. Compaq C provides functions for converting
back and forth between OpenVMS and UNIX file/path
specs. In general, you want to stick with UNIX file paths
since compilers on some other non UNIX platforms
support them, but OpenVMS file paths are only useful
on OpenVMS.

Ultimate fix: a standard set of C routines which define a
file/path structure something like:

char * nodename;

struct ACCESSSTRU access;

char * device;

struct PATHSTRU path;

char * name;

char * type;

char * version;

which will hide all the delimiter information (so no more
explicit testing of []:/\. etc. in the code). And even then
programmers will have to stick to the routines which
manipulate this structure. So long as all this information
is lumped into one character string inside the code there
will always be portability problems. This was a design
flaw in the C language which should have been handled
back when "fopen" was first defined.

(OO) using the new CRTL features promises a (more)
simple port when using only ODS5 disks. At this
moment we plan to do a ODS5 only port.

7. I/0 LEF stream-lf and
long writes

The default file type produced by the C RTL on
OpenVMS is stream-lf. It is very similar to the text file
format on UNIX EXCEPT that records can't go above
32767 bytes. Well, they can, but they get split and
basically it doesn't quite work like it does on UNIX.

Workaround: If possible, use binary file types. Also
complain loudly and bitterly (and most likely, futilely) to
HP and maybe someday they'll fix it.

(OO) With the DECC$DEFAULT_UDF_RECORD
feature switch enabled, file access mode defaults to
RECORD instead of STREAM mode for all files except
STREAMLF.

Page 44

issue# sev/prio status description explanation, status

8. I/0 LEF what about
X11?

That's a whole other subject. See: "X11/Motif portability
concerns, UNIX to OpenVMS" at
http://seqaxp.bio.caltech.edu/www/X11_VMS_NOTES.T
XT

9. W/4 COM data types Ironically this will get you most often when you port from
Tru64. "long int" there is 64 bits, but it's only 32 bits on
OpenVMS. Tru64 also has a long long type which is 128
bits. For "long int" you can usually #ifdef in "unsigned
__int64" on the OpenVMS version. For "long long" best
hope that the code doesn't really need 128 bits,
because you can't get it on this platform!

(OO) we know from the porting newsgroup and from
direct contact that there will be lots of 64 bit issues and
typical compiler version specific workarounds in the
code. We'll try to produce clean code, but won't modify
general code just for cleanliness.

10. I/0 LEF ioctl for
terminals

If you encounter ioctl() calls being used to control a
terminal you are out of luck. The only solution is to
rewrite the code using QIO's. You will usually need to
access the documentation from the source UNIX's, as
ioctl isn't all that portable among UNIX's either.

(OO) POSIX.! depreciated ioctl() a long time ago,
because is isn't portable. But the POSIX.!
recommended termios.h with tc*() and cf*() fuctions are
not available on OpenVMS either.

11. E/16 CUR makefile OpenVMS has no "make". You can rewrite makefile to
descrip.mms and use either MMS (part of DECset) or
MMK (free) and obtain similar functionality. Your other
choice is to install GNV from http://gnv.sourceforge.net/.
It has bash and gmake.

(OO) We know we have to have DMAKE. This MAKE
version is the Achilles-heel of this port. The whole
project depends on the availability of DMAKE. We have
a alpha version working. Continued improvements in the
CRTL and the porting library will make DMAKE a more
stable and reliable product.

12. I/0 LEF lines are too
long to view

Many of the OpenVMS tools don't like the wide records
which are often found in source code and other files
originating on UNIX systems. For instance, you can't
TYPE many files, and EDIT/EDT chokes on long
records too. I usually use NEDIT
http://www.decus.de:8080/www/vms/sw/nedit.htmlx to
handle these sorts of file problems.

Page 45

http://www.decus.de:8080/www/vms/sw/nedit.htmlx
http://gnv.sourceforge.net/
http://seqaxp.bio.caltech.edu/www/X11_VMS_NOTES.TXT
http://seqaxp.bio.caltech.edu/www/X11_VMS_NOTES.TXT

issue# sev/prio status description explanation, status

13. I/0 LEF why does it
run so slowly?

After you complete your port you will often find that the
OpenVMS version is much, much slower than the UNIX
version if it is very IO intensive. The ratio can be as high
as 100X faster for UNIX over OpenVMS. Most often this
is due to the file caching speedup from UNIX, plus the
2-6X slowdown that RMS imposes on record oriented
files (as measured on a RAMdisk.) Binary IO speeds will
be closer, the IO slowdown is primarily a problem for
text/record oriented files. You can improve performance
by using the SET RMS command to increase the block
and buffer sizes. Also increase the /extend value to
avoid a flurry of short extends. If you know ahead of
time the final size of the output file set extend to that.
(You can also set these parameters in the code by
using OpenVMS specific extensions.) Improvements in
the OpenVMS file caching system are in late stages of
development, and those should help once they appear
on production systems.

That said, watch out for the use of, umm, unusual file
techniques on programs from UNIX. For instance, you
may find frequent calls to freopen(), or other program
methods which cause the disk heads to fly back and
forth between the front of the file and the end. These
sorts of bad design are masked on UNIX by the file
caching system, but are exposed in all their glory on
OpenVMS.

Programs may also run slowly on OpenVMS, or not at
all, if they expect to be able to grab vast amounts of
memory. User accounts on OpenVMS are usually
allocated a relatively small amount of virtual and
physical memory.

(OO) The recent OpenVMS ports of Apache 2.0 and
Mozilla 1.5 prove that this no longer an issue.

14. I/0 LEF why do I get
two (or more)
copies of the
output file?

Many UNIX programs try to determine if they can write
an output file by doing an fopen, and if it succeeds,
doing another. On UNIX the second one overwrites the
first and no one's the wiser. On OpenVMS you get two
versions. Sometimes scratch files are used in a similar
manner, only for those they tend to be opened and
closed many more times, resulting in a long string of
files.

Fix: find the offending second fopen() and #ifdef it and
the fclose() before it out of the code. For scratch files,
either reopen the existing file or be sure to delete the file
after the fclose().

15. I/0 LEF fseek/ftell
don't work
right

These assume a UNIX like file organization which may
or may not be present on files being read by a C
program in OpenVMS.

Fix: rewrite the code to use fgetpos() and fsetpos().

(OO) Resent changes to the CRTL solve this issue.

Page 46

issue# sev/prio status description explanation, status

16. W/4 CUR linker can't
resolve
ReadDir

By default UNIX is case sensitive pretty much
everywhere. OpenVMS is not. So the symbol "ReadDir"
goes to "readdir" which is the standard function. You'll
also see this a lot where people have a variable "foobar"
and a function "Foobar". It's generally a problem any
place code uses case to distinguish between variables
and/or functions. (Constants, which only the compiler
sees, tend not to cause so much havoc.) Code written
this way is really a pain to port because you (usually)
didn't write it, and so tend not to notice these minor
case differences. The bugs which can result if the linker
does manage to resolve things, but incorrectly, can be
very messy.

Preferred fix: rewrite the code so that all symbols are
unique when uppercased.

Other fix: use the compiler switch /names=as_is, which
preserves case.

(OO) Our preferred method is /names=(as_is,short).

17. I/0 LEF compiler gives an implicit function warning for a
common function

This happens either because the appropriate header
has been omitted or because the function in question is
#ifdef'd off by language standard specific defines. Most
UNIX compilers are really sloppy about which function is
in which language spec. Ok, they're not sloppy, but the
programmers never put them into a mode where they
check. So some function which is an XOPEN extension
compiles in without warnings on UNIX but raises a
warning on OpenVMS.

Fix: Use
/define=(_XOPEN_SOURCE,_XOPEN_SOURCE_EXT
ENDED,_POSIX_SOURCE) as required to get the right
lines of the header files processed.

(OO) Please read the Macro's chapter and The CRTL
Reference Guide (1.5.2 Selecting Standard; page 1-19).
The macro _XOPEN_SOURCE_EXTENDED already
implies _XOPEN_SOUCE and _POSIX_SOURCE!

18. W/2 COM where are the
standard
header files?

They always live in the text library:

SYS$COMMON:[SYSLIB]DECC$RTLDEF.TLB

but may also have been expanded into

SYS$SYSDEVICE:[SYS0.SYSCOMMON.DECC$LIB.R
EFERENCE.DECC$RTLDEF]*.h

(OO) Be aware that the HP C/C++ compilers use the
text libraries in
SYS$COMMON:[SYSLIB]DECC$RTLDEF.TLB, and
that the text version in
SYS$SYSDEVICE:[SYS0.SYSCOMMON.DECC$LIB.R
EFERENCE.DECC$RTLDEF]*.h are only for reference
purposes and may not be up-to-date!

Page 47

issue# sev/prio status description explanation, status

19. E/4 COM what's wrong
with #include
<../../foo/woo/b
lah.h>?

Putting paths into includes is BAD, EVIL, YUCKY, etc.,
and unfortunately, fairly common. The example shown
here is the worst case - you'll only ever have a hope of
compiling this if the default directory is in exactly the
right place.

Preferred fix: Whenever possible eliminate the paths
from the code and use /include=([-],[],[.foo]) and the like
to tell the compiler where to find them. (These are the
equivalent of using on UNIX: -I.. -I. -Ifoo)

Desperate measures fix: For an include like you can
define a concealed logical "foo" which points to the
correct place in the directory structure on your system
and Compaq C will be able to look in the [.woo.moo]
subdirectory of it and find the file blah.h.

(OO) Although I don't remember ever having a problem
with include paths, the current version of the HP C/C++
compilers handles UNIX style include paths very well.

In the current C standard, the extention (.h) shoold also
be ommitted.

20. I/0 LEF the compiler
includes
"foo.h" but not
"Foo.h"

OpenVMS is case insensitive. Even ODS5, which will
preserve case, will not distinguish between these two
files. Usually this shows up long before the compiler
gets a shot at it when the archive is unpacked and
complains/warns that it is overwriting FOO.H.

Fix: rewrite the code to use case invariant file names.

(OO) Starting with OpenVMS 7.3-1 you can turn on
case sensitive behavior. In DCL you do this with:

$ SET PROCESS/CASE=SENSETIVE

But you should also compile with /names=as_is

Page 48

issue# sev/prio status description explanation, status

21. I/0 LEF how do I find a
memory
access
problem?

Often code which ran "correctly" on one platform will fail
miserably on another if it access memory out of bounds.
Such "working" code will usually fail when you port it to
OpenVMS just because variables will be located in
memory differently.

One method of dealing with this is to do:

#ifdef __VMS
#define free myfree
int decc$free(void *ptr); /* prototype for
decc$free */
void myfree(void *ptr){
#include #include if(decc$free(ptr) != 0){
(void) printf("illegal free() operation\n");
(void) lib$signal(SS$_ACCVIO);
}
}
#endif /* __VMS */

decc$free will complain if you try to free a region of
memory, whereas free() cannot warn you about the
mayhem which is being committed. Many memory
errors begin or end with an invalid free() and this will
catch them.

Here is a method suggested by Hoff (Stephen) Hoffman
and posted in comp.os.vms

Because of the likelihood of application programming
errors -- trampling past the end of the allocated storage
being most common -- I almost never call malloc and
free directly. Further, by intercepting the memory
allocation calls, I can call lib$get_vm and similar,
particularly using VM zones, and can tailor the particular
behavior most appropriate. With a "temporary mempory
pool" VM zone, I can also flush all allocations in that
zone in a single call, so that I can easily reset the pool...
Also available with VM zones are the tools to traverse
and report on the VM zones.

Jacket your calls to malloc and free. Code the malloc
jacket to add a quadword at the front of the allocated
area and a quadword at the back and then call the
actual malloc asking for the requested size plus sixteen
bytes. Before returning the allocated storage -- the base
address of the allocated block plus eight -- fill the front
and back quadword with a known (and no zero bytes in
the quadword) pattern, possibly based on the address
and size, etc. Code the free jacket to check for the
patterns and scream if it finds errors, and to call free if
not -- remembering to back up the base of the buffer by
eight bytes from what the caller passed in. (I typically
refer to these quadwords as "fenceposts" -- straying
from the expected behaviour is quite easy to track
down.)

If you were on more recent OpenVMS Alpha version,
you could use the heap analyzer in the OpenVMS
Debugger to poke around.

(OO) Also note that there are several compiler options

Page 49

issue# sev/prio status description explanation, status

22. E/24 CEF fork() OpenVMS vfork() doesn't work like fork(). Search your
code for fork() and if you find it, refer to gnuplot, or
some other already ported application, for an example
of how to replace the code.

(OO) Also note that OpenVMS vfork() doesn't quite
work like UNIX vfork(). See the fork() chapter in this
document.

23. I/0 LEF where do I
look for help?

Post to the newsgroup comp.os.vms

Use dejanews power search at

http://www.dejanews.com/home_ps.shtml

to search that newsgroup. (Be aware that the default
setting only goes back about a year, use the date fields
on the bottom to look back further.)

"Ask the wizard" at http://h71000.www7.hp.com/wizard/

Get a copy of the freeware CD or other already ported
programs and scan them for solutions to the current
problem. The freeware CD is on the net at:

http://h71000.www7.hp.com/openvms/freeware/

(OO) The GNV http://gnv.sourceforge.net/ site, the HP
Open Source Tools page
http://h71000.www7.hp.com/opensource/opensource.ht
mland our own sites http://www.4ovms.dyndns.org and
http://www.oooovms.dyndns.org to name a few more.

24. I/0 LEF system() system() passes a command line to a subprocess,
executes it, and then returns. Since the command line is
by definition OS specific, any instances of system() in
ported code must inevitably be rewritten. Ideally they
should be removed entirely - find some way to do
perform the desired action in code rather than by
running a subprocess.

(OO) It isn't OS specific. It's shell specific. Also note that
with GNV installed many UNIX commands work.

25(JE
M).

I/0 LEF getenv()
behavior

The behavior of getenv() depends on the version and
ECO of the DEC C RTL and possibly logical names
defined on your system.

Fix: use sys$trnlnm() instead.

(DRM comment: I've also observed instances where
symbols and logicals interfered with the expected
behavior. This happened primarily when the
symbol/logical involved was a "standard" symbol that
getenv handled differently. For instance, if "term" was
previously defined in DCL than getenv("term") would
return the user defined value, which often was not at all
the desired quantity, and the program would fail.)

(OO) Recent versions of the CRTL may have fixed this
issue.

Page 50

http://www.oooovms.dyndns.org/
http://www.4ovms.dyndns.org/
http://h71000.www7.hp.com/opensource/opensource.html
http://h71000.www7.hp.com/opensource/opensource.html
http://gnv.sourceforge.net/
http://h71000.www7.hp.com/openvms/freeware/
http://h71000.www7.hp.com/wizard/
http://www.dejanews.com/home_ps.shtml

issue# sev/prio status description explanation, status

26(JE
M).

I/0 LEF mmap() on
text files

mmap() will open files in a binary mode. That is fine so
long as the file is stream-lf or binary. However, if it is
some other type of RMS file the program doing this will
likely fail when it encounters the embedded RMS
information.

Fix (DRM): require input files to be either stream-lf or
binary, or if that is not possible, do not use mmap().
Either way will likely require extensive recoding.

(OO) Recent versions of the CRTL may have fixed this
issue.

27(JE
M).

I/0 LEF /tmp and
others map to
locations,
overridden by
logical names

Apparently some versions of the C RTL map /tmp to
SYS$SCRATCH /dev/null to NLA0:, and perhaps some
others are translated as well. In the case of /tmp if you
have defined a logical TMP and try to write to
/tmp/foo.txt it will go to the directory set by the logical.
This is consistent with the usage of logicals for paths
which are not "special". Just be aware that the logical
TMP or DEV may have been defined with some other
meaning, so that /dev/null might end up creating a real
file NULL in the directory pointed to by the logical DEV!

(OO) There are several CRTL feature switches to tune
this behavior.

28(JE
M).

I/0 LEF setuid() The setuid() function is a stub and just returns 0 to
indicate "success". That may not be optimal, since it
really failed (the UID did not change.) User written
setuid() is possible, but when the transfer is to an
account which does not have read access to the calling
processes job table, then SYS$SCRATCH and
SYS$LOGIN will not be available.

(OO) Starting with OpenVMS 7.3-2 you can enable
POSIX style ID's, with the DECC$POSIX_STYLE_UID
feature switch. With POSIX style ID's enabled setuid() is
fully functional.

29(JE
M).

I/0 LEF uid_t/gid_t
size
inconsistencie
s

getuid() returns 16 bits (the member part of a UIC) with
some compiler flags or on VMS 6.x and under, and 32
bits (the whole UIC) otherwise. stat() returns a 32 bit uid
and a 16 bit gid. setuid() (user written) will need a 32 bit
uid value.

(OO) For some time now, you can compile with the
macro __USE_LONG_GID_T to enable 32 bit gid and
uid values.

Page 51

issue# sev/prio status description explanation, status

30. I/0 LEF Files produced
by the C RTL
have invalid
RMS
attributes

This isn't a portability problem per se, but rather a
general C RTL problem which will affects all ported
programs. The problem is that sequential text files
written by the C RTL default to having a Longest Record
value of 32767, and this can cause havoc with some
other programs which foolishly believe that the value is
accurate. For instance, SORT will allocate 32767
bytes/record for any such file, so that it cannot easily
sort even a relatively small file. (The work around in this
instance is to either use SORT/PROCESS=tag or to
figure out how big LRL is and repair the file with SET
FILE/ATTRIB=(lrl:whatever) before sorting it.)

Partial fix: (This is really a sad excuse for a solution but
it's all there is)

$ define/user decc$default_lrl 100

will set the LRL value to 100 instead of 32767.
However, the 100 can be just as wrong as the 32767 -
write a record of length 16k into that file and the RMS
value will stay at 100. The C RTL should really just keep
track of the records it writes and put the REAL value.

Section 1.6 of the Compaq C Run-Time Library
Reference Manual is the only place this logical is
mentioned:

In OpenVMS Version 7.0 the default LRL value on
stream files was changed from 0 to 32767. This change
caused significant performance degradation on certain
file operations such as sort.

This is no longer a problem. The Compaq C Run-Time
Library now lets you define the logical
DECC$DEFAULT_LRL to change the default record-
length value on stream files.

The Compaq C Run-Time Library first looks for this
logical. If it is found and it translates to a numeric value
between 0 and 32767, that value is used for the default
LRL.

I disagree emphatically that "this is no longer a
problem". The value of LRL set by
DECC$DEFAULT_LRL is every bit as wrong as the
default LRL. Its only advantage is that it can be "small
and wrong" rather than "large and wrong."

Page 52

issue# sev/prio status description explanation, status

31. I/0 LEF Where do I
obtain tools
and libraries
for porting?

bash,gmake, and many others are part of GNV
http://gnv.sourceforge.net/

qt 2.1 http://www.lehrig.de/service/service2.php

xforms 0.88 (warning, bugs in some versions of the C
RTL and some graphics drivers are triggered by this
software! Includes a port of XPM in shareable format)
http://world.std.com/~xforms/

parallel programming: pvm, tcgmsg (maybe MPICH too,
but it wasn't there as this was written)
ftp://v36.chemie.uni-konstanz.de/

OpenVMS Porting Library from Compaq (September
2003)
http://h71000.www7.hp.com/openvms/products/ips/porti
ng.html

Many libraries may be found in already completed ports
see:
http://h71000.www7.hp.com/openvms/freeware/index.ht
ml

http://h71000.www7.hp.com/freeware/

Use advanced search from http://groups.google.com/ to
look for posts in comp.os.vms concerning the package
of interest.

(OO) The HP Open Source Tools page
http://h71000.www7.hp.com/opensource/opensource.ht
mland, The HP e-business technology page
http://h71000.www7.hp.com/ebusiness/technology.html,
Jouk Jansen's OpenVMS page
http://nchrem.tnw.tudelft.nl/openvms/software2.html and
our own sites http://www.4ovms.dyndns.org and
http://www.oooovms.dyndns.org to name a few more.

Page 53

http://www.oooovms.dyndns.org/
http://www.4ovms.dyndns.org/
http://nchrem.tnw.tudelft.nl/openvms/software2.html
http://h71000.www7.hp.com/ebusiness/technology.html
http://h71000.www7.hp.com/opensource/opensource.htmland
http://h71000.www7.hp.com/opensource/opensource.htmland
http://groups.google.com/
http://h71000.www7.hp.com/freeware/
http://h71000.www7.hp.com/openvms/freeware/index.html
http://h71000.www7.hp.com/openvms/freeware/index.html
http://h71000.www7.hp.com/openvms/products/ips/porting.html
http://h71000.www7.hp.com/openvms/products/ips/porting.html
http://world.std.com/~xforms/
http://www.lehrig.de/service/service2.php
http://gnv.sourceforge.net/

issue# sev/prio status description explanation, status

32. Use of the
fdopen() call
after a open()
call fails while
the same code
on unix
succeeds.

Depending on the mode-specification in the open() call
the following fdopen() call can fail. Unless the mode
parameters specify a “b” (binary), the file system
assumes that the file isn't opened in binary mode. The
following fdopen() will give a NULL back, indicating
failure, because fdopen() expects a file in binary mode.

To solve this problem you must add extra parameters to
the open() call.

Code fragment from BZIP2:

/* Open an output file safely with O_EXCL and good permissions.
 This avoids a race condition in versions < 1.0.2, in which
 the file was first opened and then had its interim permissions
 set safely. We instead use open() to create the file with
 the interim permissions required. (--- --- rw-).

 For non-Unix platforms, if we are not worrying about
 security issues, simple this simply behaves like fopen.
*/
FILE* fopen_output_safely (Char* name, const char* mode)
{
if BZ_UNIX
 FILE* fp;
 IntNative fh;
 fh = open(name, O_WRONLY|O_CREAT|O_EXCL, S_IWUSR|S_IRUSR);
 if (fh == -1) return NULL;
 fp = fdopen(fh, mode);
 if (fp == NULL) close(fh);
 return fp;
else
 return fopen(name, mode);
endif
}

We added "ctx=bin" and "fop=dfw" to the open() call.
"ctx=bin" is the required part for the described problem.
"fop=dfw" is added to improve performance. Look at
the description in the manual for an explanation of these
parameters.

/* Open an output file safely with O_EXCL and good permissions.
 This avoids a race condition in versions < 1.0.2, in which
 the file was first opened and then had its interim permissions
 set safely. We instead use open() to create the file with
 the interim permissions required. (--- --- rw-).

 For non-Unix platforms, if we are not worrying about
 security issues, simple this simply behaves like fopen.
*/
FILE* fopen_output_safely (Char* name, const char* mode)
{
if BZ_UNIX
 FILE* fp;
 IntNative fh;
if VMS
 fh = open(name, O_WRONLY|O_CREAT|O_EXCL, S_IWUSR|S_IRUSR,
"ctx=bin",
"fop=dfw");
else
 fh = open(name, O_WRONLY|O_CREAT|O_EXCL, S_IWUSR|S_IRUSR);
endif
 if (fh == -1) return NULL;
 fp = fdopen(fh, mode);
 if (fp == NULL) close(fh);
 return fp;
else
 return fopen(name, mode);
endif
}

Page 54

issue# sev/prio status description explanation, status

33. E/3 unknown
switch errors
from gcc and
ar wrappers

Because the gcc and ar executables are 'just' wrappers
around the digital compilers and the standard linker and
not all switches are implemented (yet), the executables
will complain of 'unknown switches'. There are switches
that can safely be ignored (for instance the 'u' switch
used with ar). To do this permanently you can modify
the ar wrapper:

old gnu:[src.gnv.wrapper]ar.c:
Code:
<snip>
 case 'q':
 case 'r':
 break;
<snip>

new ar.c
Code:
<snip>
 case 'q':
 case 'r':
 case 'u':
 break;
<snip>

Then there switches that can be replaced with another
command: gcc -dumpmachine (Display the compiler's
target processor) as long as you figure out what part of
the output is needed.

Code fragment + output on a Linux machine:

$ gcc -dumpmachine | awk -F- '{print $3}'
Linux

On OpenVMS you can replace this with:

bash$ uname
OpenVMS

or

bash$ uname -s
OpenVMS

A list of possible gcc switch replacements:

-Wall -Wc/Warn

-funsigned-char -Wc/UNSIGNED_CHAR

The last category is the real error which has
consequences for the compile or link. In this category
fall -pipe and the various -print switches

Page 55

Appendix 3: adduser.com
Procedure to add a number of users. This procedure must be run by a privileged account (system).
Define a logical (define user dsa12:) if you want the user accounts created on an other disk as the
system disk.

$!
$! p1 last UID value used
$! p2 number of user accounts to create
$!
$ if p1.eqs."" then p1 = 10 ! last UID value used
$ if p2.eqs."" then p2 = 16 ! count
$!
$ if f$trnlnm("user") .eqs ""
$ then
$ disk=f$trnlnm("sys$sysdevice")
$ else
$ disk=f$trnlnm("user")
$endif
$! sh sym disk
$ create/dir 'disk'[user]
$ define/system/exec/trans=conc users 'disk'[user.]
$ create sys$manager:temp1.tmp
$DECK
$! login.com for OpenOffice portingroup member
$
$ set term/dev=vt300
$ set term/line/insert
$! start gnv
$ @GNU:[lib]GNV_SETUP.COM
$!
$! setup tools
$ set process /parse_style=extended
$ set process /case_lookup=(blind)
$ define/job decc$pipe_buffer_size 65000
$
$
$ scratch = f$trnlnm("sys$login") - "]" + ".temp]"
$ define/job sys$scratch 'scratch'
$!
$ exit
$!
$EOD
$ create sys$manager:.tmp
$DECK
.bashrc
#
PATH=$PATH:/usr/bin:/usr/local/bin
export PATH
export GNV_DISABLE_DCL_FALLBACK=1
$EOD
$ open/write out loop.tmp
$ write out "$! generated procedure for account creation"
$ write out "$!"
$ write out "$ set def sys$system"
$ write out "$ define/sys/exec/trans=conc users ''disk'[user.]"
$ write out "$!"
$ x = p1
$ i = 0
$loop:
$ x = f$integer(f$fao("!OL", %o'x' +1)) ! Magic
$ i = i + 1
$ write sys$output i, " ", x

Page 56

$ write out "$ mcr authorize"
$ write out "add
user''i'/uic=[237,''x']/dev=users:/dir=[user''i']/passw=user''i'/flag=nodisuser/n
opwdexp"
$ write out "$ create /dir users:[user''i']/own=user''i'"
$ write out "$ create /dir users:[user''i'.temp]/own=user''i'"
$ write out "$ copy/log sys$manager:temp1.tmp
users:[user''i']login.com"
$ write out "$ copy/log sys$manager:.tmp users:[user''i'].bashrc"
$ write out "$!"
$ if i.lt.p2 then goto loop
$ write out "$! cleaning up a bit..."
$ write out "$ delete/noconf sys$manager:temp1.tmp;*"
$ write out "$ delete/noconf sys$manager:.tmp;* "
$ write out "$ exit"
$eof: close out
$!
$ exit

Page 57

Page 58

Appendix 4: OpenVMS – UNIX comparison

UNIX VMS

root (privileged user) SYSTEM or any username with sufficient (all?)
privileges. Every user can be equipped with a set
of privileges and/or process rights identifiers
needed for the required task

hierarchical file-system

directory paths are separated by the / symbol

exact paths start with /

a relative path can start with a directory name or
with .. which means go one directory back and
then go to the given directory path

the directory . is the current directory

/ (root)

/bin

/etc

/usr

/dev

/tmp

/var

device oriented file system

all absolute path names start with a node name,
next a device name or logical name followed by
a dot separated path between angular brackets

logical:[dir.subdir.subsubdir]

originally a directory tree could only be 8 levels
deep

the root directory is always

logical:[000000]

a relative path is a dot separated path starting
with a “.” or a “-” between angular brackets

[.dir.subdir]

[-.dir.subdir]

with one or more – within the angular brackets
you specify you want to go one or more directory
back in the directory structure

a logical can represent a device, both actual
devices, points in the file system we want to
represent as devices (concealed), paths, path
lists or other values or value lists

SYS$SYSDEVICE: is an example of a device
logical. It is the device holding the system
software

SYS$COMMON: is an example of a path that
can be used as a device (you can do DIR
SYS$COMMON:[000000])

SYS$SYSROOT: is an example of a path list

SYS$ANNOUNCE: is an example of a simple
value

with ... at the end of a path you specify all
subdirectories.

You can use % as single character wild card
character and * for multiple character wild card
characters both in filenames and in file paths.

XX%%YY.*

SMTP.COM

Page 59

UNIX VMS

Numerous file systems: ufs (the original UNIX file
system), ext, ext2, ext3 (Linux), adfs (True64),
efs(IRIX), hfs, s5 (HP-UX), jfs (AIX) and let's not
forget nfs.

The most important ones for this document are
ODS-2 and ODS-5. ODS-5 is rather new and is a
requirement for UNIX portability.

Symbolic links Hard links or Soft links

Hard links were introduced in 7.3-1 and only
work when enabled on the disk.

The advantage over soft links is that a reference
count is maintained, to make sure that the file
doesn't get deleted until the last link is deleted.

pwd SHOW DEFAULT

df SHOW DEV D

cd SET DEFAULT

/bin

$HOME or ~

$PATH

SYS$SYSTEM:

SYS$LOGIN:

DCL$PATH:

environment variables symbols & logicals

symbols are quite similar to UNIX environment
variables

logicals can also contain values but they are not
necessarily limited to the scope of your process
or job. Logicals are organized in tables that can
be seen cluster wide, system wide, group wide,
process wide or job specific. You can even
create your own logical name tables.

case sensitive OpenVMS is case insensitive by default. Since
version 7.3 you can make your process behave
case preservative on ODS-5 disks by enabling
extended filename parsing. Since version 7.3-1
you can also make your process behave case
sensitive on ODS-5 disks.

SET PROCESS
/PARSE_STYLE=(TRADITIONAL/EXTENDED)

SET PROCESS
/CASE_LOOKUP=(BLIND/SENSITIVE)

character devices, block devices mailbox (qio/qiow) RMS

...

Page 60

UNIX VMS

/dev/..., makedev, mount, fstab. VMS recognizes all new devices at boot time and
automatically loads the necessary drivers.

It is possible to load drivers and add new devices
to a running system. OpenVMS 7.3-2 even
allows you to enlarge disk volumes dynamically.

To use a new disk you can use the following
command to initialize it:

$ INITIALIZE <device> <label> -
/NOHIGHWATER /STRUCTURE=5 -
/VOLUME_CHARACTERISTICS= -
(HARDLINKS,ACCESS_DATES)

Mount the disk disk with the following command:

$ MOUNT <device> <label> /SYSTEM -
/NOASSIST

To mount a disk every time when the system
boots add the above command to
SYS$MANAGER:SYSTARTUP_VMS.COM.

sh, csh, tcsh, bash, ksh, zsh, ... DCL

vi EDIT (/TPU is the default)

/etc/profile SYS$MANAGER:SYLOGIN.COM

~/.profile (for sh, csh, tcsh)

~/.bashrc (for bash shell)

SYS$LOGIN:LOGIN.COM

chmod +x to make a file executable To be able to execute a executable or procedure
one has to have at least execute access.

No equivalent, see below

.<filename> will execute an executable file (script
or program) when not in your PATH environment

@ to execute a DCL script

RUN to execute a program not somehow known
to your runtime environment.

<command> to execute a program known to your
runtime environment.

There are various ways to extend your runtime
environment.

1. define a symbol that points to the program to
execute i.e. UNZIP :==
SYSLOGIN:[TOOLS]UNZIP.EXE. UNZIP is
now a command known to your environment.

2. add the directory containing the executable to
your DCL$PATH i.e. DEFINE DCL$PATH
SYS$LOGIN:[TOOLS],'F$TRNLNM(“DCL$PATH
”)'. Now every executable program in the
directory SYS$LOGIN:[TOOLS] is available as a
command in your runtime environment.

3. Add a command definition to to your
environment i.e. SET COMMAND.

Page 61

	Preface
	Part I Open source, Unix and OpenVMS
	Open source versus propriety software
	Unix, Linux, Open Unix standard
	OpenVMS, open standards
	Open source on OpenVMS
	OpenVMS-UNIX differences

	Part II: build the open source porting environment on OpenVMS.
	Build the OpenVMS porting system
	Installing GNV
	Process quotas
	Setting up porting accounts

	PART III: Hints and tips on using the porting environment and the GNV tools
	Working with GNV
	Tips

	Part IV: Building open source software
	The GNU build system
	Recommendation for OpenVMS
	The OpenVMS C runtime library
	Recommendation
	Macros
	Recommendation
	GCC wrapper
	Fork()
	RMS
	Known Porting Issues

	Part V: Appendices
	Appendix 1: Example port of m4
	Appendix 2: Porting Issues
	Appendix 3: adduser.com
	Appendix 4: OpenVMS – UNIX comparison

